Opuscula Math. 32, no. 2 (2012), 227-234
http://dx.doi.org/10.7494/OpMath.2012.32.2.227
Opuscula Mathematica
On the extended and Allan spectra and topological radii
Hugo Arizmendi-Peimbert
Angel Carrillo-Hoyo
Jairo Roa-Fajardo
Abstract. In this paper we prove that the extended spectrum \(\Sigma(x)\), defined by W. Żelazko, of an element \(x\) of a pseudo-complete locally convex unital complex algebra \(A\) is a subset of the spectrum \(\sigma_A(x)\), defined by G.R. Allan. Furthermore, we prove that they coincide when \(\Sigma(x)\) is closed. We also establish some order relations between several topological radii of \(x\), among which are the topological spectral radius \(R_t(x)\) and the topological radius of boundedness \(\beta_t(x)\).
Keywords: topological algebra, bounded element, spectrum, pseudocomplete algebra, topologically invertible element, extended spectral radius, topological spectral radius.
Mathematics Subject Classification: 46H05.
- Hugo Arizmendi-Peimbert
- Universidad Nacional Autónoma de México, Instituto de Matemáticas, Ciudad Universitaria, México D.F. 04510 México
- Angel Carrillo-Hoyo
- Universidad Nacional Autónoma de México, Instituto de Matemáticas, Ciudad Universitaria, México D.F. 04510 México
- Jairo Roa-Fajardo
- Universidad del Cauca, Popayán-Colombia, Departamento de Matemáticas, Calle 5 No. 4-70, Popayán-Colombia
- Received: 2011-02-09.
- Revised: 2011-04-07.
- Accepted: 2011-04-13.