Opuscula Math. 32, no. 2 (2012), 227-234
http://dx.doi.org/10.7494/OpMath.2012.32.2.227

 
Opuscula Mathematica

On the extended and Allan spectra and topological radii

Hugo Arizmendi-Peimbert
Angel Carrillo-Hoyo
Jairo Roa-Fajardo

Abstract. In this paper we prove that the extended spectrum \(\Sigma(x)\), defined by W. Żelazko, of an element \(x\) of a pseudo-complete locally convex unital complex algebra \(A\) is a subset of the spectrum \(\sigma_A(x)\), defined by G.R. Allan. Furthermore, we prove that they coincide when \(\Sigma(x)\) is closed. We also establish some order relations between several topological radii of \(x\), among which are the topological spectral radius \(R_t(x)\) and the topological radius of boundedness \(\beta_t(x)\).

Keywords: topological algebra, bounded element, spectrum, pseudocomplete algebra, topologically invertible element, extended spectral radius, topological spectral radius.

Mathematics Subject Classification: 46H05.

Full text (pdf)

  • Hugo Arizmendi-Peimbert
  • Universidad Nacional Autónoma de México, Instituto de Matemáticas, Ciudad Universitaria, México D.F. 04510 México
  • Angel Carrillo-Hoyo
  • Universidad Nacional Autónoma de México, Instituto de Matemáticas, Ciudad Universitaria, México D.F. 04510 México
  • Jairo Roa-Fajardo
  • Universidad del Cauca, Popayán-Colombia, Departamento de Matemáticas, Calle 5 No. 4-70, Popayán-Colombia
  • Received: 2011-02-09.
  • Revised: 2011-04-07.
  • Accepted: 2011-04-13.
Opuscula Mathematica - cover

Cite this article as:
Hugo Arizmendi-Peimbert, Angel Carrillo-Hoyo, Jairo Roa-Fajardo, On the extended and Allan spectra and topological radii, Opuscula Math. 32, no. 2 (2012), 227-234, http://dx.doi.org/10.7494/OpMath.2012.32.2.227

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.