Opuscula Math. 45, no. 5 (2025), 601-621
https://doi.org/10.7494/OpMath.2025.45.5.601

 
Opuscula Mathematica

From set-valued dynamical processes to fractals

Grzegorz Guzik
Grzegorz Kleszcz

Abstract. We present a general theory of topological semiattractors and attractors for set-valued semigroups. Our results extend and unify those previously obtained by Lasota and Myjak. In particular, we naturally generalize the concept of semifractals for the systems acting on Hausdorff topological spaces. The main tool in our analysis is the notion of topological (Kuratowski) limits. We especially focus on the forward asymptotic behavior of discrete set-valued processes generated by sequences of iterated function systems. In this context, we establish sufficient conditions for the existence of fractal-type limit sets.

Keywords: topological limit, lower semicontinuous multifunction, iterated function system, set-valued process, attractor.

Mathematics Subject Classification: 28A80, 54H20, 26E25, 47H04, 93E03.

Full text (pdf)

  1. M.F. Barnsley, A. Vince, Developments in fractal geometry, Bull. Math. Sci. 3 (2013), 299-348. https://doi.org/10.1007/s13373-013-0041-3
  2. G. Beer, Topologies on Closed and Closed Convex Sets, Springer Dordrecht, 1993. https://doi.org/10.1007/978-94-015-8149-3
  3. F. Browder, On the convergence of successive approximations for nonlinear functional equations, Indag. Math. 30 (1968), 27-35. https://doi.org/10.1016/s1385-7258(68)50004-0
  4. R.S. Burachik, A.N. Iusem, Set-Valued Mappings and Enlargements of Monotone Operators, Springer, 2008.
  5. H. Cui, P.E. Kloeden, Invariant forward attractors of non-autonomous random dynamical systems, J. Differential Equ. 265 (2018), no. 12, 6166-6186. https://doi.org/10.1016/j.jde.2018.07.028
  6. H. Cui, P.E. Kloeden, Tail convergence of pullback attractors for asymptotically converging multi-valued dynamical system, Asymptotic Anal. 112 (2019), no. 3-4, 165-184. https://doi.org/10.3233/asy-181501
  7. H. Cui, P.E. Kloeden, Comparison of attractors of asymptotically equivalent difference equations, Springer Pros. Math. Stat. 287 (2019), 31-50. https://doi.org/10.1007/978-3-030-20016-9_2
  8. G. Guzik, Semiattractors of set-valued semiflows, J. Math. Anal. Appl, 435 (2016), no. 2, 1321-1334. https://doi.org/10.1016/j.jmaa.2015.11.029
  9. G. Guzik, On a class of cocycles having attractors which consists of singletons, Topol. Methods Nonlinear Anal. 50 (2017), no. 2, 727-739. https://doi.org/10.12775/tmna.2017.042
  10. G. Guzik, On supports of evolution systems of measures for converging in law non-homogenous Markov processes, Topol. Methods Nonlinear Anal. 55 (2020), no. 1, 19-36. https://doi.org/10.12775/tmna.2019.082
  11. G. Guzik, Boundedness of Lasota-Myjak attractors for iterated function systems, submitted.
  12. J.E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J. 30 (1981), 713-747. https://doi.org/10.1512/iumj.1981.30.30055
  13. J. Jachymski, I. Jóźwik, Nonlinear contractive conditions: a comparison and related problems, Banach Center Publ. 77 (2007), 123-146. https://doi.org/10.4064/bc77-0-10
  14. R. Kapica, J. Morawiec, Refinement equations and Feller operators, Integr. Equ. Oper. Theory 70 (2011), 323-331. https://doi.org/10.1007/s00020-011-1879-y
  15. K. Kuratowski, Wstęp do teorii mnogości i topologii, PWN, Warszawa, 1962 [in Polish].
  16. A. Lasota, J. Myjak, Semifractals, Bull. Pol. Acad. Sci. Math. 44 (1996), no. 1, 5-21.
  17. A. Lasota, J. Myjak, Attractors of multifunctions, Bull. Pol. Acad. Sci. Math. 48 (2000), no. 3, 319-334.
  18. K. Leśniak, N. Snigireva, F. Strobin, A Vince, Transition phenomena for the attractor of an iterated function system, Nonlinearity 35 (2022), no. 10, 5396-5426. https://doi.org/10.1088/1361-6544/ac8af1
  19. G. Manjunath, H. Jaeger, The dynamics of random difference equations is remodeled by closed relations, SIAM J. Math. Anal. 46 (2014), no. 1, 459-483. https://doi.org/10.1137/120868815
  20. S. Mrówka, On the convergence of nets of sets, Fundamenta Math. 45 (1958), 247-253. https://doi.org/10.4064/fm-45-1-247-253
  21. M. Nowak, Pointwise attractors which are not strict, Ind. Math. 35 (2024), no. 1, 119-130. https://doi.org/10.1016/j.indag.2023.10.002
  22. L. Rempe-Gillen, M. Urbański, Non-autonomous conformal iterated function systems and Moran-set constructions, Trans. Amer. Math. Soc. 368 (2016), no. 3, 1979-2017. https://doi.org/10.1090/tran/6490
  23. F. Strobin, Contractive iterated function systems enriched with nonexpansive maps, Results Math. 76 (2021), Article no. 153. https://doi.org/10.1007/s00025-021-01451-0
  24. M. Tyran-Kamińska, Stability of Markov processes nonhomogenous in time, Ann. Pol. Math. 71 (1999), no. 1, 47-59. https://doi.org/10.4064/ap-71-1-47-59
  25. A. Vince, Thresholds for one-parameter families of affine iterated function systems, Nonlinearity 33 (2020), no. 12, 6541-6563. https://doi.org/10.1088/1361-6544/aba237
  • Communicated by Marek Galewski.
  • Received: 2025-05-27.
  • Revised: 2025-07-18.
  • Accepted: 2025-07-24.
  • Published online: 2025-09-13.
Opuscula Mathematica - cover

Cite this article as:
Grzegorz Guzik, Grzegorz Kleszcz, From set-valued dynamical processes to fractals, Opuscula Math. 45, no. 5 (2025), 601-621, https://doi.org/10.7494/OpMath.2025.45.5.601

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.