Opuscula Math. 45, no. 4 (2025), 451-470
https://doi.org/10.7494/OpMath.2025.45.4.451
Opuscula Mathematica
Datko-type theorems concerning asymptotic behaviour of exponential type in mean
Abstract. In this paper, we study the concept of exponential (in)stability in mean for stochastic skew-evolution semiflows, in which the exponential (in)stability in the classical sense is replaced by an average with respect to a probability measure. Our paper consists of three major results. The first is to obtain Datko-type characterizations for the exponential stability in mean of stochastic skew-evolution semiflows. Next, we acquire Datko-type characterizations for the exponential instability in mean by extending the stability techniques. The last is to extend Lyapunov-type equations to the case of exponential (in)stability in mean.
Keywords: exponential stability, exponential instability, stochastic skew-evolution semiflows, Datko's theorem, Banach function spaces.
Mathematics Subject Classification: 93E15, 34D05, 46E30.
- L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. https://doi.org/10.1007/978-3-662-12878-7
- G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications (45), Cambridge University Press, 1992. https://doi.org/10.1017/cbo9780511666223
- R. Datko, Extending a theorem of A.M. Liapunov to Hilbert space, J. Math. Anal. Appl. 32 (1970), 610-616. https://doi.org/10.1016/0022-247x(70)90283-0
- R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal. 3 (1972), 428-445. https://doi.org/10.1137/0503042
- P.V. Hai, Discrete and continuous versions of Barbashin-type theorem of linear skew-evolution semiflows, Appl. Anal. 90 (2011), 1897-1907. https://doi.org/10.1080/00036811.2010.534728
- P.V. Hai, Two new approaches to Barbashin theorem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 19 (2012), 773-798.
- P.V. Hai, Polynomial stability and polynomial instability for skew-evolution semi-flows, Result. Math. 74 (2019), Article no. 175. https://doi.org/10.1007/s00025-019-1099-3
- M. Megan, A.L. Sasu, B. Sasu, On uniform exponential stability of linear skew-product semiflows in Banach spaces, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 143-154. https://doi.org/10.36045/bbms/1102715145
- M. Megan, A.L. Sasu, B. Sasu, Exponential instability of linear skew-product semiflows in terms of Banach function spaces, Results Math. 45 (2004), 309-318. https://doi.org/10.1007/bf03323385
- P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, Heidelberg, New York, 1991. https://doi.org/10.1007/978--3-642--76724--1
- A. Pazy, On the applicability of Lyapunov's theorem in Hilbert space, SIAM J. Math. Anal. 3 (1972), 291-294. https://doi.org/10.1137/0503028
- C. Preda, P. Preda, Lyapunov theorems for the asymptotic behavior of evolution families on the half-line, Canad. Math. Bull. 54 (2011), 364-369. https://doi.org/10.4153/cmb-2010-102-7
- S. Rolewicz, On uniform N-equistability, J. Math. Anal. Appl. 115 (1986), 434-441. https://doi.org/10.1016/0022-247x(86)90006-5
- D. Stoica, M. Megan, On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces, Czechoslovak Math. J. 62 (2012), 879-887. https://doi.org/10.1007/s10587-012-0071-0
- J.M.A.M. van Neerven, Exponential stability of operators and operator semigroups, J. Funct. Anal. 130 (1995), 293-309. https://doi.org/10.1006/jfan.1995.1071
- Tian Yue, Barbashin type characterizations for the uniform polynomial stability and instability of evolution families, Georgian Math. J. 29 (2022), 953-966. https://doi.org/10.1515/gmj-2022-2188
- J. Zabczyk, Remarks on the control of discrete-time distributed parameter systems, SIAM J. Control 12 (1974), 721-735. https://doi.org/10.1137/0312056
- Pham Viet Hai
https://orcid.org/0000-0001-9993-4070
- Faculty of Mathematics and Informatics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Vietnam
- Communicated by P.A. Cojuhari.
- Received: 2025-05-20.
- Accepted: 2025-06-21.
- Published online: 2025-07-16.