Opuscula Math. 45, no. 4 (2025), 451-470
https://doi.org/10.7494/OpMath.2025.45.4.451

 
Opuscula Mathematica

Datko-type theorems concerning asymptotic behaviour of exponential type in mean

Pham Viet Hai

Abstract. In this paper, we study the concept of exponential (in)stability in mean for stochastic skew-evolution semiflows, in which the exponential (in)stability in the classical sense is replaced by an average with respect to a probability measure. Our paper consists of three major results. The first is to obtain Datko-type characterizations for the exponential stability in mean of stochastic skew-evolution semiflows. Next, we acquire Datko-type characterizations for the exponential instability in mean by extending the stability techniques. The last is to extend Lyapunov-type equations to the case of exponential (in)stability in mean.

Keywords: exponential stability, exponential instability, stochastic skew-evolution semiflows, Datko's theorem, Banach function spaces.

Mathematics Subject Classification: 93E15, 34D05, 46E30.

Full text (pdf)

  1. L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. https://doi.org/10.1007/978-3-662-12878-7
  2. G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications (45), Cambridge University Press, 1992. https://doi.org/10.1017/cbo9780511666223
  3. R. Datko, Extending a theorem of A.M. Liapunov to Hilbert space, J. Math. Anal. Appl. 32 (1970), 610-616. https://doi.org/10.1016/0022-247x(70)90283-0
  4. R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal. 3 (1972), 428-445. https://doi.org/10.1137/0503042
  5. P.V. Hai, Discrete and continuous versions of Barbashin-type theorem of linear skew-evolution semiflows, Appl. Anal. 90 (2011), 1897-1907. https://doi.org/10.1080/00036811.2010.534728
  6. P.V. Hai, Two new approaches to Barbashin theorem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 19 (2012), 773-798.
  7. P.V. Hai, Polynomial stability and polynomial instability for skew-evolution semi-flows, Result. Math. 74 (2019), Article no. 175. https://doi.org/10.1007/s00025-019-1099-3
  8. M. Megan, A.L. Sasu, B. Sasu, On uniform exponential stability of linear skew-product semiflows in Banach spaces, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 143-154. https://doi.org/10.36045/bbms/1102715145
  9. M. Megan, A.L. Sasu, B. Sasu, Exponential instability of linear skew-product semiflows in terms of Banach function spaces, Results Math. 45 (2004), 309-318. https://doi.org/10.1007/bf03323385
  10. P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, Heidelberg, New York, 1991. https://doi.org/10.1007/978--3-642--76724--1
  11. A. Pazy, On the applicability of Lyapunov's theorem in Hilbert space, SIAM J. Math. Anal. 3 (1972), 291-294. https://doi.org/10.1137/0503028
  12. C. Preda, P. Preda, Lyapunov theorems for the asymptotic behavior of evolution families on the half-line, Canad. Math. Bull. 54 (2011), 364-369. https://doi.org/10.4153/cmb-2010-102-7
  13. S. Rolewicz, On uniform N-equistability, J. Math. Anal. Appl. 115 (1986), 434-441. https://doi.org/10.1016/0022-247x(86)90006-5
  14. D. Stoica, M. Megan, On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces, Czechoslovak Math. J. 62 (2012), 879-887. https://doi.org/10.1007/s10587-012-0071-0
  15. J.M.A.M. van Neerven, Exponential stability of operators and operator semigroups, J. Funct. Anal. 130 (1995), 293-309. https://doi.org/10.1006/jfan.1995.1071
  16. Tian Yue, Barbashin type characterizations for the uniform polynomial stability and instability of evolution families, Georgian Math. J. 29 (2022), 953-966. https://doi.org/10.1515/gmj-2022-2188
  17. J. Zabczyk, Remarks on the control of discrete-time distributed parameter systems, SIAM J. Control 12 (1974), 721-735. https://doi.org/10.1137/0312056
  • Communicated by P.A. Cojuhari.
  • Received: 2025-05-20.
  • Accepted: 2025-06-21.
  • Published online: 2025-07-16.
Opuscula Mathematica - cover

Cite this article as:
Pham Viet Hai, Datko-type theorems concerning asymptotic behaviour of exponential type in mean, Opuscula Math. 45, no. 4 (2025), 451-470, https://doi.org/10.7494/OpMath.2025.45.4.451

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.