Opuscula Math. 45, no. 4 (2025), 423-450
https://doi.org/10.7494/OpMath.2025.45.4.423
Opuscula Mathematica
Convex geometries yielded by transit functions
Manoj Changat
Lekshmi Kamal K. Sheela
Iztok Peterin
Ameera Vaheeda Shanavas
Abstract. Let \(V\) be a finite nonempty set. A transit function is a map \(R:V\times V\rightarrow 2^V\) such that \(R(u,u)=\{u\}\), \(R(u,v)=R(v,u)\) and \(u\in R(u,v)\) holds for every \(u,v\in V\). A set \(K\subseteq V\) is \(R\)-convex if \(R(u,v)\subset K\) for every \(u,v\in K\) and all \(R\)-convex subsets of \(V\) form a convexity \(\mathcal{C}_R\). We consider the Minkowski-Krein-Milman property that every \(R\)-convex set \(K\) in a convexity \(\mathcal{C}_R\) is the convex hull of the set of extreme points of \(K\) from axiomatic point of view and present a characterization of it. Later we consider several well-known transit functions on graphs and present the use of the mentioned characterizations on them.
Keywords: Minkowski-Krein-Milman property, convexity, convex geometry, transit function.
Mathematics Subject Classification: 52A01, 05C38.
- K. Adaricheva, J.B. Nation, Classes of Semidistributive Lattices, [in:] G. Grätzer, F. Wehrung (eds), Lattice Theory: Special Topics and Applications, Birkäuser, Cham, 2015, 59-101. https://doi.org/10.1007/978-3-319-44236-5_3
- K. Adaricheva, G. Czédli, Note on the description of join-distributive lattices by permutations, Algebra Universalis 72 (2014), 155-162. https://doi.org/10.1007/s00012-014-0295-y
- L. Alcon, A note on path domination, Discuss. Math. Graph Theory 36 (2016), 1021-1034. https://doi.org/10.7151/dmgt.1917
- L. Alcon, B. Brešar, T. Gologranc, M. Gutierrez, T. Kraner Šumenjak, I. Peterin, A. Tepeh, Toll convexity, European J. Combin. 46 (2015), 161-175. https://doi.org/10.1016/j.ejc.2015.01.002
- J.P. Barthélemy, F. Brucker, Binary clustering, Discr. Appl. Math. 156 (2008), 1237-1250. https://doi.org/10.1016/j.dam.2007.05.024
- J.R. Calder, Some elementary properties of interval convexities, J. Lond. Math. Soc. (2) 3 (1971), 422-428. https://doi.org/10.1112/jlms/s2-3.3.422
- M. Changat, S. Klavžar, H.M. Mulder, The all-paths transit function of a graph, Czech. Math. J. 51 (2001), 439-448. https://doi.org/10.1023/a:1013715518448
- M. Changat, A.K. Lakshmikuttyamma, J. Mathews, I. Peterin, P.G. Narasimha-Shenoi, G. Seethakuttyamma, S. Špacapan, A forbidden subgraph characterization of some graph classes using betweenness axioms, Discrete Math. 313 (2013), 951-958. https://doi.org/10.1016/j.disc.2013.01.013
- M. Changat, J. Mathew, Induced path transit function, monotone and Peano axioms, Discrete Math. 286 (2004), 185-194. https://doi.org/10.1016/j.disc.2004.02.017
- M. Changat, J. Mathews, H.M. Mulder, The induced path function, monotonicity and betweenness, Discrete Appl. Math. 158 (2010), 426-433. https://doi.org/10.1016/j.dam.2009.10.004
- M. Changat, J. Mathews, I. Peterin, P.G. Narasimha-Shenoi, \(n\)-ary transit functions in graphs, Discuss. Math. Graph Theory 30 (2010), 671-685. https://doi.org/10.7151/dmgt.1522
- M. Changat, P.G. Narasimha-Shenoi, P.F. Stadler, Axiomatic characterization of transit functions of weak hierarchies, Art Discr. Appl. Math. 2 (2019), #P1.01. https://doi.org/10.26493/2590-9770.1260.989
- M. Changat, F.H. Nezhad, P.F. Stadler, Axiomatic characterization of transit functions of hierarchies, Ars Math. Contemp. 14 (2018), 117-128. https://doi.org/10.26493/1855-3974.831.e12
- M. Changat, F.H. Nezhad, P.F. Stadler, Cut-vertex transit functions of hypergraphs, [in:] A. Mudgal, C.R. Subramanian (eds), Algorithms and Discrete Applied Mathematics, CALDAM 2021, volume 12601 of Lecture Notes Comp. Sci., Springer, Cham, 2021, 222-233. https://doi.org/10.1007/978-3-030-67899-9_17
- V. Chvatal, D. Rautenbach, P.M. Schafer, Finite Sholander trees, trees, and their betweenness, Discrete Math. 311 (2011), 2143-2147. https://doi.org/10.1016/j.disc.2011.06.011
- V. Chvátal, Antimatroids, Betweenness, Convexity, [in:] W. Cook, L. Lovász, J. Vygen (eds), Research Trends in Combinatorial Optimization, Springer, Berlin, Heidelberg, 2009, 57-64. https://doi.org/10.1007/978-3-540-76796-1_3
- G. Cźedli, Coordinatization of finite join-distributive lattices, Algebra Universalis 71 (2014), 385-404. https://doi.org/10.1007/s00012-014-0282-3
- M. Dewar, D. Pike, J. Proos, Connectivity in hypergraphs, Canad. Math. Bull. 61 (2018), 252-271. https://doi.org/10.4153/cmb-2018-005-9
- J.P. Doignon, J.C. Falmagne, Knowledge Spaces, Springer-Verlag, Berlin, 1999. https://doi.org/10.1007/978-3-642-58625-5
- M.C. Dourado, M. Gutierrez, F. Protti, S. Tondato, Weakly toll convexity and proper interval graphs, arXiv:2203.17056.
- M.C. Dourado, M. Gutierrez, F. Protti, R. Sampaio, S. Tondato, Characterizations of graph classes via convex geometries: A survey, Discrete Appl. Math. 360 (2025), 246-257. https://doi.org/10.2139/ssrn.4383265
- F. Dragan, F. Nicolai, A. Brandstädt, Convexity and HHD-free graphs, SIAM J. Discrete Math. 12 (1999), 119-135. https://doi.org/10.1137/s0895480195321718
- P. Duchet, Classical perfect graphs: An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 12 (1984), 67-96. https://doi.org/10.1016/s0304-0208(08)72924-4
- P.H. Edelman, R.E. Jamison, The theory of convex geometries, Geometriae Dedicata 19 (1985), 247-270. https://doi.org/10.1007/bf00149365
- J.C. Falmagne, J.P. Doignon, Learning Spaces, Springer-Verlag, Berlin, 2011.
- M. Farber, R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic Discrete Methods 7 (1986), 433-444. https://doi.org/10.1137/0607049
- O. Goecke, B. Korte, L. Lovász, Examples and algorithmic properties of greedoids, [in:] Combinatorial Optimization (Como, 1986), volume 1403 of Lecture Notes in Mathematics, Springer, Berlin, 1989, 113-161. https://doi.org/10.1007/bfb0083463
- E. Howorka, A characterization of ptolemaic graphs, J. Graph Theory 5 (1981), 323-331. https://doi.org/10.1002/jgt.3190050314
- D. Kay, G. Chartrand, A characterization of certain ptolemaic graphs, Canad. J. Math. 17 (1965), 342-346. https://doi.org/10.4153/cjm-1965-034-0
- B. Korte, L. Lovász, R. Schrader, Transposition Greedoids, [in:] Greedoids, volume 4 of Algorithms and Combinatorics, Springer-Verlag, Berlin, 1991, 141-151. https://doi.org/10.1007/978-3-642-58191-5_10
- C.G. Lekkerkerker, J.C. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math. 51 (1962) 45-64. https://doi.org/10.4064/fm-51-1-45-64
- B. Monjardet, A use for frequently rediscovering a concept, Order 1 (1985), 415-417. https://doi.org/10.1007/bf00582748
- B. Monjardet, The consequences of Dilworth's work on lattices with unique irreducible decompositions, [in:] K.P. Bogart, R. Freese, J.P.S. Kung (eds), The Dilworth Theorems: Selected Theorems of Robert P. Dilworth, Birkhäuser, Boston, 1990, 192-199. https://doi.org/10.1007/978-1-4899-3558-8_17
- B. Monjardet, Statement of precedence and a comment on IIA terminology, Games and Economic Behavior 62 (2008), 736-738. https://doi.org/10.1016/j.geb.2007.07.004
- M.A. Morgana, H.M. Mulder, The induced path convexity, betweenness and svelte graphs, Discrete Math. 254 (2002), 349-370. https://doi.org/10.1016/s0012-365x(01)00296-5
- H.M. Mulder, The Interval function of a Graph, MC Tract 132, Mathematisch Centrum, Amsterdam, 1980.
- H.M. Mulder, Transit functions on graphs (and posets), Proc. Int. Conf. - Convexity in Discrete Structures 5 (2008), 117-130.
- H.M. Mulder, L. Nebeský, Axiomatic characterization of the interval function of a graph, European J. Combin. 30 (2009), 1172-1185. https://doi.org/10.1016/j.ejc.2008.09.007
- S. Olariu, Weak bipolarizable graphs, Discrete Math. 74 (1989), 159-171. https://doi.org/10.1016/0012-365x(89)90208-2
- L.K. Sheela, M. Changat, J. Jacob, The weak-toll function of a graph: axiomatic characterizations and first-order non-definability, [in:] S. Kalyanasundaram, A. Maheshwari (eds), Algorithms and Discrete Applied Mathematics, Lecture Notes in Computer Science, vol. 14508, Springer, Cham, 2024, 286-301. https://doi.org/10.1007/978-3-031-52213-0_20
- L.K. Sheela, M. Changat, I. Peterin, Axiomatic characterization of the toll walk function of some graph classes, Lecture Notes Comput. Sci. 13947 (2023), 427-446. https://doi.org/10.1007/978-3-031-25211-2_33
- M. Stern, Semimodular Lattices: Theory and Applications, Encyclopedia of Mathematics and its Applications, vol. 73, Cambridge University Press, 1999. https://doi.org/10.1017/cbo9780511665578
- M.L.J. van de Vel, Theory of Convex Structures, Elsevier, North Holland, Amsterdam, 1993.
- Manoj Changat
https://orcid.org/0000-0001-7257-6031
- University of Kerala, Department of Futures Studies, Thiruvananthapuram - 695581, India
- Lekshmi Kamal K. Sheela
https://orcid.org/0000-0002-8527-3280
- University of Kerala, Department of Futures Studies, Thiruvananthapuram - 695581, India
- Iztok Peterin (corresponding author)
https://orcid.org/0000-0002-1990-6967
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška 46, 2000 Maribor, Slovenia
- Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
- Ameera Vaheeda Shanavas
- University of Kerala, Department of Futures Studies, Thiruvananthapuram - 695581, India
- Communicated by Ingo Schiermeyer.
- Received: 2024-10-07.
- Revised: 2025-06-10.
- Accepted: 2025-06-10.
- Published online: 2025-07-16.