Opuscula Math. 45, no. 3 (2025), 307-338
https://doi.org/10.7494/OpMath.2025.45.3.307

 
Opuscula Mathematica

Calculation of explicit expressions for the Hopf bifurcation limit cycles in delay-differential equations

José Enríquez Gabeiras
Juan Francisco Padial Molina

Abstract. This paper introduces a methodology to derive explicit power series approximations for the limit cycle periodic solutions of the Hopf bifurcation in autonomous discrete delay differential equations (DDE). The procedure extends the methodology introduced by Casal and Freedman in 1980, by providing a detailed algorithm that iteratively performs systematic calculations up to any desired order of approximation, ensuring a specific error tolerance for any nonlinear DDE presenting a Hopf bifurcation. The methodology is applied to three relevant delay-differential models to illustrate its features: a recently introduced car-following mobility model that explains oscillations in road traffic, a SIR epidemic model for propagation of diseases with temporary immunity, and a simplified macroeconomic system to model business cycles.

Keywords: delay-differential equations, Hopf bifurcation, Poincaré-Lindstedt method, car-following model, SIR epidemic model, macroeconomic model.

Mathematics Subject Classification: 37M20, 37N30, 65D15, 65H17, 65Q20.

Full text (pdf)

  1. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Review E 51 (1995), 1035-1042. https://doi.org/10.1103/physreve.51.1035
  2. C.M. Batistela, D.P.F. Correa, Á.M. Bueno, J.R.C. Piqueira, SIRSI compartmental model for COVID-19 pandemic with immunity loss, Chaos, Solitons and Fractals 142 (2021), 110388. https://doi.org/10.1016/j.chaos.2020.110388
  3. F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-1686-9
  4. A. Bridgewater, B. Huard, M. Angelova, Amplitude and frequency variation in nonlinear glucose dynamics with multiple delays via periodic perturbation, J. Nonlinear Sci. 30 (2020), 737-766. https://doi.org/10.1007/s00332-020-09612-1
  5. A. Casal, M. Freedman, A Poincaré-Lindstedt approach to bifurcation problems for differential-delay equations, IEEE Trans. Automat. Control 25 (1980), 967-973. https://doi.org/10.1109/tac.1980.1102450
  6. O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990), 365-382. https://doi.org/10.1007/bf00178324
  7. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), 29-48. https://doi.org/10.1016/s0025-5564(02)00108-6
  8. L.C. Edie, Car-following and steady-state theory for noncongested traffic, Oper. Res. 9 (1961), 66-76. https://doi.org/10.1287/opre.9.1.66
  9. N.B. Ferguson, B.A. Finlayson, Error bounds for approximate solutions to nonlinear ordinary differential equations, AIChE Journal 18 (1972), 1053-1059. https://doi.org/10.1002/aic.690180526
  10. D.C. Gazis, R. Herman, R.B. Potts, Car-following theory of steady-state traffic flow, Oper. Res. 7 (1959), 499-505. https://doi.org/10.1287/opre.7.4.499
  11. D.C. Gazis, R. Herman, R.W. Rothery, Nonlinear follow-the-leader models of traffic flow, Oper. Res. 9 (1961), 545-567. https://doi.org/10.1287/opre.9.4.545
  12. D.E. Gilsinn, On algorithms for estimating computable error bounds for approximate periodic solutions of an autonomous delay differential equation, Commun. Nonlinear Sci. Numer. Simul. 14 (2009),1526-1550. https://doi.org/10.1016/j.cnsns.2008.02.006
  13. Z. Guo, X. Ma, Residue harmonic balance solution procedure to nonlinear delay differential systems, Appl. Math. Comput. 237 (2014), 20-30. https://doi.org/10.1016/j.amc.2014.03.090
  14. J.K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977. https://doi.org/10.1007/978-1-4612-9892-2_3
  15. H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42 (2000), 599-653. https://doi.org/10.1137/s0036144500371907
  16. Z. Lv, J. Zeng, Y. Ding, X. Liu, Stability analysis of time-delayed SAIR model for duration of vaccine in the context of temporary immunity for COVID-19 situation, Electron. Res. Arch. 31 (2023), 1004-1030. https://doi.org/10.3934/era.2023050
  17. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, John Wiley & Sons, 2008. https://doi.org/10.1177/058310248101300507
  18. G.F. Newell, Nonlinear effects in the dynamics of car following, Oper. Res. 9 (1961), 209-229. https://doi.org/10.1287/opre.9.2.209
  19. J.F. Padial, A. Casal, Bifurcation in car-following models with time delays and driver and mechanic sensitivities, Rev. R. Acad. Cienc. Exactas Fis. Nat. 116 (2022), 180. https://doi.org/10.1007/s13398-022-01307-4
  20. B. Pell, M.D. Johnston, P. Nelson, A data-validated temporary immunity model of COVID-19 spread in Michigan, Math. Biosci. Eng. 19 (2022), 10122-10142. https://doi.org/10.3934/mbe.2022474
  21. R. Rand, Differential-delay equations, [in:] A.C.J. Luo, J.Q. Sun (eds.), Complex Systems: Fractionality, Time-delay and Synchronization, Springer Science and Business Media, 2011. https://doi.org/10.1007/978-3-642-17593-0
  22. M.Q. Shakhany, K. Salimifard, Predicting the dynamical behavior of COVID-19 epidemic and the effect of control strategies, Chaos, Solitons and Fractals 146 (2021), 110823. https://doi.org/10.1016/j.chaos.2021.110823
  23. B. Shayak, M.M. Sharma, M. Gaur, A.K. Mishra, Impact of reproduction number on the multiwave spreading dynamics of COVID-19 with temporary immunity: A mathematical model, Int. J. Infec. Dis. 104 (2021), 649-654. https://doi.org/10.1016/j.ijid.2021.01.018
  24. H.L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-7646-8_5
  25. F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer, Berlin, 1996. https://doi.org/10.1007/978-3-642-61453-8
  26. M. Xiao, J. Cao, Approximate expressions of the bifurcating periodic solutions in a neuron model with delay-dependent parameters by perturbation approach, Cogn. Neurodyn. 4 (2010), 241-250. https://doi.org/10.1007/s11571-010-9116-y
  27. M. Xiao, G. Jiang, L. Zhao, W. Xu, Y. Wan, C. Fan, Z. Wang, Stability switches and Hopf bifurcations of an isolated population model with delay-dependent parameters, Appl. Math. Comput. 264 (2015), 99-115. https://doi.org/10.1016/j.amc.2015.04.071
  28. X. Zhang, H. Zhu, Hopf bifurcation and chaos of a delayed finance system, Complexity 2019 (2019), 6715036. https://doi.org/10.1155/2019/6715036
  • Communicated by J.I. Díaz.
  • Received: 2025-02-16.
  • Revised: 2025-04-02.
  • Accepted: 2025-04-05.
  • Published online: 2025-05-30.
Opuscula Mathematica - cover

Cite this article as:
José Enríquez Gabeiras, Juan Francisco Padial Molina, Calculation of explicit expressions for the Hopf bifurcation limit cycles in delay-differential equations, Opuscula Math. 45, no. 3 (2025), 307-338, https://doi.org/10.7494/OpMath.2025.45.3.307

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.