Opuscula Math. 45, no. 3 (2025), 307-338
https://doi.org/10.7494/OpMath.2025.45.3.307
Opuscula Mathematica
Calculation of explicit expressions for the Hopf bifurcation limit cycles in delay-differential equations
José Enríquez Gabeiras
Juan Francisco Padial Molina
Abstract. This paper introduces a methodology to derive explicit power series approximations for the limit cycle periodic solutions of the Hopf bifurcation in autonomous discrete delay differential equations (DDE). The procedure extends the methodology introduced by Casal and Freedman in 1980, by providing a detailed algorithm that iteratively performs systematic calculations up to any desired order of approximation, ensuring a specific error tolerance for any nonlinear DDE presenting a Hopf bifurcation. The methodology is applied to three relevant delay-differential models to illustrate its features: a recently introduced car-following mobility model that explains oscillations in road traffic, a SIR epidemic model for propagation of diseases with temporary immunity, and a simplified macroeconomic system to model business cycles.
Keywords: delay-differential equations, Hopf bifurcation, Poincaré-Lindstedt method, car-following model, SIR epidemic model, macroeconomic model.
Mathematics Subject Classification: 37M20, 37N30, 65D15, 65H17, 65Q20.
- M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Review E 51 (1995), 1035-1042. https://doi.org/10.1103/physreve.51.1035
- C.M. Batistela, D.P.F. Correa, Á.M. Bueno, J.R.C. Piqueira, SIRSI compartmental model for COVID-19 pandemic with immunity loss, Chaos, Solitons and Fractals 142 (2021), 110388. https://doi.org/10.1016/j.chaos.2020.110388
- F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-1686-9
- A. Bridgewater, B. Huard, M. Angelova, Amplitude and frequency variation in nonlinear glucose dynamics with multiple delays via periodic perturbation, J. Nonlinear Sci. 30 (2020), 737-766. https://doi.org/10.1007/s00332-020-09612-1
- A. Casal, M. Freedman, A Poincaré-Lindstedt approach to bifurcation problems for differential-delay equations, IEEE Trans. Automat. Control 25 (1980), 967-973. https://doi.org/10.1109/tac.1980.1102450
- O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990), 365-382. https://doi.org/10.1007/bf00178324
- P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), 29-48. https://doi.org/10.1016/s0025-5564(02)00108-6
- L.C. Edie, Car-following and steady-state theory for noncongested traffic, Oper. Res. 9 (1961), 66-76. https://doi.org/10.1287/opre.9.1.66
- N.B. Ferguson, B.A. Finlayson, Error bounds for approximate solutions to nonlinear ordinary differential equations, AIChE Journal 18 (1972), 1053-1059. https://doi.org/10.1002/aic.690180526
- D.C. Gazis, R. Herman, R.B. Potts, Car-following theory of steady-state traffic flow, Oper. Res. 7 (1959), 499-505. https://doi.org/10.1287/opre.7.4.499
- D.C. Gazis, R. Herman, R.W. Rothery, Nonlinear follow-the-leader models of traffic flow, Oper. Res. 9 (1961), 545-567. https://doi.org/10.1287/opre.9.4.545
- D.E. Gilsinn, On algorithms for estimating computable error bounds for approximate periodic solutions of an autonomous delay differential equation, Commun. Nonlinear Sci. Numer. Simul. 14 (2009),1526-1550. https://doi.org/10.1016/j.cnsns.2008.02.006
- Z. Guo, X. Ma, Residue harmonic balance solution procedure to nonlinear delay differential systems, Appl. Math. Comput. 237 (2014), 20-30. https://doi.org/10.1016/j.amc.2014.03.090
- J.K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977. https://doi.org/10.1007/978-1-4612-9892-2_3
- H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42 (2000), 599-653. https://doi.org/10.1137/s0036144500371907
- Z. Lv, J. Zeng, Y. Ding, X. Liu, Stability analysis of time-delayed SAIR model for duration of vaccine in the context of temporary immunity for COVID-19 situation, Electron. Res. Arch. 31 (2023), 1004-1030. https://doi.org/10.3934/era.2023050
- A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, John Wiley & Sons, 2008. https://doi.org/10.1177/058310248101300507
- G.F. Newell, Nonlinear effects in the dynamics of car following, Oper. Res. 9 (1961), 209-229. https://doi.org/10.1287/opre.9.2.209
- J.F. Padial, A. Casal, Bifurcation in car-following models with time delays and driver and mechanic sensitivities, Rev. R. Acad. Cienc. Exactas Fis. Nat. 116 (2022), 180. https://doi.org/10.1007/s13398-022-01307-4
- B. Pell, M.D. Johnston, P. Nelson, A data-validated temporary immunity model of COVID-19 spread in Michigan, Math. Biosci. Eng. 19 (2022), 10122-10142. https://doi.org/10.3934/mbe.2022474
- R. Rand, Differential-delay equations, [in:] A.C.J. Luo, J.Q. Sun (eds.), Complex Systems: Fractionality, Time-delay and Synchronization, Springer Science and Business Media, 2011. https://doi.org/10.1007/978-3-642-17593-0
- M.Q. Shakhany, K. Salimifard, Predicting the dynamical behavior of COVID-19 epidemic and the effect of control strategies, Chaos, Solitons and Fractals 146 (2021), 110823. https://doi.org/10.1016/j.chaos.2021.110823
- B. Shayak, M.M. Sharma, M. Gaur, A.K. Mishra, Impact of reproduction number on the multiwave spreading dynamics of COVID-19 with temporary immunity: A mathematical model, Int. J. Infec. Dis. 104 (2021), 649-654. https://doi.org/10.1016/j.ijid.2021.01.018
- H.L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-7646-8_5
- F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer, Berlin, 1996. https://doi.org/10.1007/978-3-642-61453-8
- M. Xiao, J. Cao, Approximate expressions of the bifurcating periodic solutions in a neuron model with delay-dependent parameters by perturbation approach, Cogn. Neurodyn. 4 (2010), 241-250. https://doi.org/10.1007/s11571-010-9116-y
- M. Xiao, G. Jiang, L. Zhao, W. Xu, Y. Wan, C. Fan, Z. Wang, Stability switches and Hopf bifurcations of an isolated population model with delay-dependent parameters, Appl. Math. Comput. 264 (2015), 99-115. https://doi.org/10.1016/j.amc.2015.04.071
- X. Zhang, H. Zhu, Hopf bifurcation and chaos of a delayed finance system, Complexity 2019 (2019), 6715036. https://doi.org/10.1155/2019/6715036
- José Enríquez Gabeiras (corresponding author)
https://orcid.org/0009-0002-0496-1282
- Universidad Politécnica de Madrid, Department of Applied Mathematics, Madrid, Spain
- Juan Francisco Padial Molina
https://orcid.org/0000-0001-7092-3554
- Universidad Politécnica de Madrid, Department of Applied Mathematics, Madrid, Spain
- Communicated by J.I. Díaz.
- Received: 2025-02-16.
- Revised: 2025-04-02.
- Accepted: 2025-04-05.
- Published online: 2025-05-30.