Opuscula Math. 45, no. 3 (2025), 293-305
https://doi.org/10.7494/OpMath.2025.45.3.293

 
Opuscula Mathematica

Magnetic Dirichlet Laplacian in curved waveguides

Diana Barseghyan
Swanhild Bernstein
Baruch Schneider
Martha Lina Zimmermann

Abstract. For a two-dimensional curved waveguide, it is well known that the spectrum of the Dirichlet Laplacian is unstable with respect to waveguide deformations. This means that if the waveguide is a straight strip then the spectrum of the Dirichlet Laplacian is purely essential. From the other hand, the perturbation of the straight strip produces eigenvalues below the essential spectrum. In this paper, the Dirichlet-Laplace operator with a magnetic field is considered. We explicitly prove that the spectrum of the magnetic Laplacian is stable under small but non-local deformations of the waveguide.

Keywords: magnetic Schrödinger operators, essential spectrum, discrete spectrum.

Mathematics Subject Classification: 35P15, 81Q10.

Full text (pdf)

  1. D. Barseghyan, P. Exner, Magnetic field influence on the discrete spectrum of locally deformed leaky wires, Reports on Mathematical Physics 88 (2015), 47-57. https://doi.org/10.1016/s0034-4877(21)00055-0
  2. D. Borisov, P. Exner, R.R. Gadyl’shin, D. Krejčiřík, Bound states in weakly deformed strips and layers, Ann. Henri Poincaré 2 (2001), 553-572. https://doi.org/10.1007/pl00001045
  3. J. Bory-Reyes, D. Barseghyan, B. Schneider, Magnetic Schrödinger operator with the potential supported in a curved two-dimensional strip, Mediterr. J. Math. 21 (2024), 1-15. https://doi.org/10.1007/s00009-024-02651-y
  4. W. Bulla, F. Gesztesy, W. Renger, B. Simon, Weakly coupled bound states in quantum waveguides, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1487-1495. https://doi.org/10.1090/s0002-9939-97-03726-x
  5. P. Duclos, P. Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions, Rev. Math. Phys. 7 (1995), 73-102. https://doi.org/10.1142/s0129055x95000062
  6. T. Ekholm, H. Kovařík, Stability of the magnetic Schrödinger operator in a waveguide, Comm. Partial Differential Equations 30 (2005), 539-565. https://doi.org/10.1081/pde-200050113
  7. P. Exner, H. Kovařík, Quantum Waveguides, Springer International, Heidelberg, 2015. https://doi.org/10.1007/978-3-319-18576-7_10
  8. P. Exner, P. Šeba, Bound states in curved quantum wavequides, J. Math. Phys. 30 (1989), 2574-2580. https://doi.org/10.1063/1.528538
  9. J. Goldstone, R.L. Jaffe, Bound states in twisting tubes, Phys. Rev. B 45 (1992), 14100-14107. https://doi.org/10.1103/physrevb.45.14100
  10. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin-Heidelberg-New York, 1966. https://doi.org/10.1007/978-3-642-53393-8_9
  11. M. Reed, B. Simon, Methods of Modern Mathematical Physics, I. Functional Analysis, Academic Press, New York, 1980.
  • Communicated by P.A. Cojuhari.
  • Received: 2025-04-15.
  • Revised: 2025-04-21.
  • Accepted: 2025-04-23.
  • Published online: 2025-05-30.
Opuscula Mathematica - cover

Cite this article as:
Diana Barseghyan, Swanhild Bernstein, Baruch Schneider, Martha Lina Zimmermann, Magnetic Dirichlet Laplacian in curved waveguides, Opuscula Math. 45, no. 3 (2025), 293-305, https://doi.org/10.7494/OpMath.2025.45.3.293

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.