Opuscula Math. 45, no. 2 (2025), 275-285
https://doi.org/10.7494/OpMath.2025.45.2.275

 
Opuscula Mathematica

Local properties of graphs that induce global cycle properties

Yanyan Wang
Xiaojing Yang

Abstract. A graph \(G\) is locally Hamiltonian if \(G[N(v)]\) is Hamiltonian for every vertex \(v\in V(G)\). In this note, we prove that every locally Hamiltonian graph with maximum degree at least \(|V(G)| - 7\) is weakly pancyclic. Moreover, we show that any connected graph \(G\) with \(\Delta(G)\leq 7\) and \(\delta(G[N(v)])\geq 3\) for every \(v\in V (G)\), is fully cycle extendable. These findings improve some known results by Tang and Vumar.

Keywords: fully cycle extendability, weakly pancyclicity, locally connected.

Mathematics Subject Classification: 05C38, 05C45.

Full text (pdf)

  1. S.A. van Aardt, M. Frick, O.R. Oellermann, J. de Wet, Global cycle properties in locally connected, locally traceable and locally Hamiltonian graphs, Discrete Appl. Math. 205 (2016), 171-179. https://doi.org/10.1016/j.dam.2015.09.022
  2. A. Adamaszek, M. Adamaszek, M. Mnich, J.M. Schmidt, Lower bounds for locally highly connected graphs, Graphs Combin. 32 (2016), 1641-1650. https://doi.org/10.1007/s00373-016-1686-y
  3. J.A. Bondy, U.S.R. Murty, Graph Theory, Graduate Texts in Mathematics, vol. 244, Springer, New York, 2008. https://doi.org/10.1007/978-1-84628-970-5
  4. C. Brause, D. Rautenbach, I. Schiermeyer, Local connectivity, local degree conditions, some forbidden induced subgraphs, and cycle extendability, Discrete Math. 340 (2017), 596-606. https://doi.org/10.1016/j.disc.2016.11.035
  5. V.S. Gordon, Y.L. Orlovich, C.N. Potts, V.A. Strusevich, Hamiltonian properties of locally connected graphs with bounded vertex degree, Discrete Appl. Math. 159 (2011), 1759-1774. https://doi.org/10.1016/j.dam.2010.10.005
  6. G.R.T. Hendry, A strengthening of Kikustapos;s theorem, J. Graph Theory 13 (1989) 257-260. https://doi.org/10.1002/jgt.3190130212
  7. G.R.T. Hendry, Extending cycles in graphs, Discrete Math. 85 (1990), 59-72. https://doi.org/10.1016/0012-365x(90)90163-c
  8. P.A. Irzhavski, Hamiltonicity of locally connected graphs: complexity results, Vestsi NAN Belarusi. Ser, Fiz-Mat. Navuk. 4 (2014), 37-43 [in Russian].
  9. D.J. Oberly, D.P. Sumner, Every connected, locally connected nontrivial graph with no induced claw is Hamiltonian, J. Graph Theory 3 (1979), 351-356. https://doi.org/10.1002/jgt.3190030405
  10. Z. Skupień, Locally Hamiltonian graphs and Kuratowski theorem, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 13 (1965), 615-619.
  11. L. Tang, E. Vumar, A note on cycles in locally Hamiltonian and locally Hamilton-connected graphs, Discuss. Math. Graph Theory 40 (2020), 77-84. https://doi.org/10.7151/dmgt.2124
  12. D. West, Research problems, Discrete Math. 272 (2003), 301-306. https://doi.org/10.1016/s0012-365x(03)00207-3
  13. J.P. de Wet, M. Frick, S.A. van Aardt, Hamiltonicity of locally Hamiltonian and locally traceable graphs, Discrete Appl. Math. 236 (2018), 137-152. https://doi.org/10.1016/j.dam.2017.10.030
  • Yanyan Wang
  • Henan University, School of Mathematics and Statistics, Kaifeng, 475004, P.R. China
  • Xiaojing Yang (corresponding author)
  • Henan University, School of Mathematics and Statistics, Kaifeng, 475004, P.R. China
  • Communicated by Mirko Horňák.
  • Received: 2024-07-20.
  • Revised: 2025-01-22.
  • Accepted: 2025-01-22.
  • Published online: 2025-03-10.
Opuscula Mathematica - cover

Cite this article as:
Yanyan Wang, Xiaojing Yang, Local properties of graphs that induce global cycle properties, Opuscula Math. 45, no. 2 (2025), 275-285, https://doi.org/10.7494/OpMath.2025.45.2.275

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.