Opuscula Math. 45, no. 2 (2025), 251-274
https://doi.org/10.7494/OpMath.2025.45.2.251

 
Opuscula Mathematica

Extended symmetry of the Witten-Dijkgraaf-Verlinde-Verlinde equation of Monge-Ampere type

Patryk Sitko
Ivan Tsyfra

Abstract. We construct the Lie algebra of extended symmetry group for the Monge-Ampere type Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation. This algebra includes novel generators that are unobtainable within the framework of the classical Lie approach and correspond to non-point group transformation of dependent and independent variables. The expansion of symmetry is achieved by introducing new variables through second-order derivatives of the dependent variable. By integrating the Lie equations, we derive transformations that enable the generation of new solutions to the Witten-Dijkgraaf-Verlinde-Verlinde equation from a known one. These transformations yield formulas for obtaining new solutions in implicit form and Bäcklund-type transformations for the nonlinear associativity equations. We also demonstrate that, in the case under study, introducing a substitution of variables via third-order derivatives, as previously used in the literature, does not yield generators of non-point transformations. Instead, this approach produces only the Lie groups of classical point transformations. Furthermore, we perform a group reduction of partial differential equations in two independent variables to a system of ordinary differential equations. This reduction leads to the explicit solution of the fully nonlinear differential equation. Notably, the symmetry group of non-point transformations expands significantly when this method is applied to the second-order differential equation, resulting in a corresponding infinite-dimensional Lie algebra. Finally, we show that auxiliary variables can be systematically derived within the framework of a generalized approach to symmetry reduction of differential equations.

Keywords: non-point symmetries, Witten-Dijkgraaf-Verlinde-Verlinde equation, symmetry group, transformations, Lie algebra.

Mathematics Subject Classification: 35B06, 35A22.

Full text (pdf)

  1. G.W. Bluman, J.D. Cole, The general similarity solution of the heat equation, J. Math. Mech. 18 (1969), 1025-1042. https://doi.org/10.1512/iumj.1969.18.18074
  2. G.W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, 1981.
  3. G.W. Bluman, Z. Yang, A symmetry-based method for constructing nonlocally related partial differential equation systems, J. Math. Phys. 54 (2013), 093504. https://doi.org/10.1063/1.4819724
  4. R. Conte, M.L. Gandarias, Symmetry reductions of a particular set of equations of associativity in two-dimensional topological field theory, J. Phys. A: Math. Gen. 38 (2005), 1187-1196. https://doi.org/10.1088/0305-4470/38/5/018
  5. R. Dijkgraaf, H. Verlinde, E. Verlinde, Topological strings in \(d<1\), Nucl. Phys. B 352 (1991), 59-86. https://doi.org/10.1016/0550-3213(91)90129-l
  6. R.K. Dodd, R.K. Bullogh, Bäcklund transformations for sine-Gordon equations, Proc. R. Soc. Lond. A 351 (1976), 499-523. https://doi.org/10.1098/rspa.1976.0154
  7. B. Dubrovin, Geometry of 2D topological field theories, [in:] R. Donagi, B. Dubrovin, E. Frenkel, E. Previato, Integrable Systems and Quantum Groups, Lecture Notes in Mathematics, vol. 1620, Montecatini Terme, Italy, 1993, 120-348. https://doi.org/10.1007/bfb0094793
  8. B.A. Dubrovin, S.P. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamilton theory, Russ. Math. Surv. 44 (1989), 35-124. https://doi.org/10.1070/rm1989v044n06abeh002300
  9. E.V. Ferapontov, On integrability of \(3 \times 3\) semi-Hamiltonian hydrodynamic type systems which do not possess Riemann invariants, Physica D: Nonlinear Phenomena 63 (1993), 50-70. https://doi.org/10.1016/0167-2789(93)90146-r
  10. E.V. Ferapontov, On the matrix Hopf equation and integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants, Physics Letters A 179 (1993), 391-397. https://doi.org/10.1016/0375-9601(93)90096-i
  11. E.V. Ferapontov, Several conjectures and results in the theory of integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants, Theor. Math. Phys. 99 2 (1994), 567-570. https://doi.org/10.1007/bf01016140
  12. E.V. Ferapontov, Dupin hypersurfaces and integrable hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants, Diff. Geom. Appl. 5 (1995), 121-152. https://doi.org/10.1016/0926-2245(95)00011-r
  13. E.V. Ferapontov, Hypersurfaces with flat centroaffine metric and equations of associativity, Geometriae Dedicata 103 (2004), 33-49. https://doi.org/10.1023/b:geom.0000013839.59173.a6
  14. E.V. Ferapontov, O.I. Mokhov, Equations of associativity in two-dimensional field theory as integrable Hamiltonian nondiagonalizable systems of hydrodynamic type, Functional Analysis and Applications 30 (1996), 195-203. https://doi.org/10.1007/bf02509506
  15. E.V. Ferapontov, C.A.P. Galvão, O.I. Mokhov, Y. Nutku, Bi-Hamiltonian Structure in 2-d Field Theory, Commun. Math. Phys. 186 (1997), 649-669. https://doi.org/10.1007/s002200050123
  16. E.V. Ferapontov, L. Hadjikos, K.R. Khusnutdinova, Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian, International Mathematics Research Notices 3 (2010), 496-535. https://doi.org/10.1093/imrn/rnp134
  17. W.I. Fushchych, I.M. Tsifra, On a reduction and solutions of nonlinear wave equations with broken symmetry, J. Phys. A 20 (1987), L45-L48. https://doi.org/10.1088/0305-4470/20/2/001
  18. A.V. Kiselev, Methods of geometry of differential equations in analysis of integrable models of field theory, Fundamentalnaya i Prikladnaya Matematika 10 (2004), 57-165.
  19. O.I. Mokhov, Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations, [in:] S.P. Novikov (ed.), Topics in Topology and Mathematical Physics, Transl. Am. Math. Soc., Ser. 2, vol. 170, Am. Math. Soc., Providence, 1995, 121-151. https://doi.org/10.1090/trans2/170/06
  20. P.J. Olver, Applications of Lie Groups to Differential Equations, 2nd ed., Springer-Verlag, New York, 1993.
  21. P.J. Olver, P. Rosenau, The construction of special solutions to partial differential equations, Phys. Lett. A 114 (1986), 107-112. https://doi.org/10.1016/0375-9601(86)90534-7
  22. L.V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982.
  23. M.V. Pavlov, R.F. Vitolo, On the bi-Hamiltonian geometry of WDVV equations, Lett. Math. Phys. 105 (2015), 1135-1163. https://doi.org/10.1007/s11005-015-0776-8
  24. S.P. Tsarëv, The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method, Math. USSR Izv. 37 (1991), 397-419. https://doi.org/10.1070/im1991v037n02abeh002069
  25. I. Tsyfra, Non-local ansätze for nonlinear heat and wave equations, J. Phys. A: Math. Gen. 30 (1997), 2251-2262. https://doi.org/10.1088/0305-4470/30/6/042
  26. I. Tsyfra, A. Napoli, A. Messina, V. Tretynyk, On new ways of group methods for reduction of evolution-type equations, J. Math. Anal. Appl. 307 (2005), 724-735. https://doi.org/10.1016/j.jmaa.2005.03.075
  27. J. Vašíček, R. Vitolo, WDVV equations and invariant bi-Hamiltonian formalism, J. High Energ. Phys. 129 (2021). https://doi.org/10.1007/jhep08(2021)129
  28. E. Witten, On the structure of the topological phase of two-dimensional gravity, Nucl. Phys. B 340 (1990), 281-332. https://doi.org/10.1016/0550-3213(90)90449-n
  29. R.Z. Zhdanov, I.M. Tsyfra, R.O. Popovych, A precise definition of reduction of partial differential equations, J. Math. Anal. Appl. 238 (1999), 101-123. https://doi.org/10.1006/jmaa.1999.6511
  • Communicated by Aleksander Gomilko.
  • Received: 2024-04-03.
  • Revised: 2025-01-19.
  • Accepted: 2025-01-28.
  • Published online: 2025-03-10.
Opuscula Mathematica - cover

Cite this article as:
Patryk Sitko, Ivan Tsyfra, Extended symmetry of the Witten-Dijkgraaf-Verlinde-Verlinde equation of Monge-Ampere type, Opuscula Math. 45, no. 2 (2025), 251-274, https://doi.org/10.7494/OpMath.2025.45.2.251

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.