Opuscula Math. 45, no. 2 (2025), 227-249
https://doi.org/10.7494/OpMath.2025.45.2.227

 
Opuscula Mathematica

Spectral analysis of infinite Marchenko-Slavin matrices

Sergio Palafox
Luis O. Silva

Abstract. This work tackles the problem of spectral characterization of a class of infinite matrices arising from the modeling of small oscillations in a system of interacting particles. The class of matrices under discussion corresponds to the infinite Marchenko-Slavin class. The spectral functions of these matrices are completely characterized, and an algorithm is provided for the reconstruction of the matrix from its spectral function. The techniques used in this work are based on recent results for the spectral characterization of infinite band symmetric matrices with so-called degenerations.

Keywords: inverse spectral problem, band symmetric matrices, spectral measure.

Mathematics Subject Classification: 34K29, 47B39, 70F17.

Full text (pdf)

  1. N.I. Akhiezer, The classical moment problem and some related questions in analysis, Translated by N. Kemmer, Hafner Publishing Co., New York, 1965.
  2. N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications Inc., New York, 1993.
  3. M.Sh. Birman, M.Z. Solomjak, Spectral Theory of Selfadjoint Operators in Hilbert Space, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, 1987. https://doi.org/10.1007/978-94-009-4586-9
  4. M.S. Brodskiĭ, Triangular and Jordan Representations of Linear Operators, American Mathematical Society, Providence, R.I., 1971.
  5. L. Golinskii, M. Kudryavtsev, Rational interpolation and mixed inverse spectral problem for finite CMV matrices, J. Approx. Theory 159 (2009), no. 1, 61-84. https://doi.org/10.1016/j.jat.2008.09.003
  6. M. Kudryavtsev, The direct and the inverse problem of spectral analysis for five-diagonal symmetric matrices. I, Mat. Fiz. Anal. Geom. 5 (1998), no. 3-4, 182-202.
  7. M. Kudryavtsev, S. Palafox, L.O. Silva, On a linear interpolation problem for \(n\)-dimensional vector polynomials, J. Approx. Theory 199 (2015), 45-62. https://doi.org/10.1016/j.jat.2015.06.006
  8. M. Kudryavtsev, S. Palafox, L.O. Silva, Inverse spectral analysis for a class of finite band symmetric matrices, New York J. Math. 23 (2017), 1141-1171.
  9. M. Kudryavtsev, S. Palafox, L.O. Silva, Inverse spectral analysis for a class of infinite band symmetric matrices, J. Math. Anal. Appl. 445 (2017), no. 1, 762-783. https://doi.org/10.1016/j.jmaa.2016.07.057
  10. V. Marchenko, V. Slavin, Inverse Problems in the Theory of Small Oscillations, Translations of Mathematical Monographs, vol. 247, American Mathematical Society, Providence, RI, 2018. https://doi.org/10.1090/mmono/247
  11. R. del Rio, M. Kudryavtsev, Inverse problems for Jacobi operators: I. Interior mass-spring perturbations in finite systems, Inverse Problems 28 (2012), no. 5, 055007. https://doi.org/10.1088/0266-5611/28/5/055007
  12. M. Van Barel, A. Bultheel, A new approach to the rational interpolation problem, J. Comput. Appl. Math. 32 (1990), no. 1-2, 281-289. https://doi.org/10.1016/0377-0427(90)90438-6
  • Sergio Palafox
  • ORCID iD https://orcid.org/0000-0002-4961-4834
  • Universidad Tecnológica de la Mixteca, Centro de Modelación Matemática, Vinculación y Consultoría, Huajuapan de León, Oaxaca, México, C.P. 69004
  • Luis O. Silva (corresponding author)
  • ORCID iD https://orcid.org/0000-0002-9028-606X
  • Universidad Nacional Autónoma de México, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Departamento de Física Matemática, Ciudad de México, C.P. 04510
  • Communicated by P.A. Cojuhari.
  • Received: 2025-01-19.
  • Revised: 2025-02-06.
  • Accepted: 2025-02-06.
  • Published online: 2025-03-10.
Opuscula Mathematica - cover

Cite this article as:
Sergio Palafox, Luis O. Silva, Spectral analysis of infinite Marchenko-Slavin matrices, Opuscula Math. 45, no. 2 (2025), 227-249, https://doi.org/10.7494/OpMath.2025.45.2.227

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.