Opuscula Math. 45, no. 2 (2025), 199-225
https://doi.org/10.7494/OpMath.2025.45.2.199

 
Opuscula Mathematica

Complete characterization of graphs with local total antimagic chromatic number 3

Gee-Choon Lau

Abstract. A total labeling of a graph \(G = (V, E)\) is said to be local total antimagic if it is a bijection \(f: V\cup E \to\{1,\ldots,|V|+|E|\}\) such that adjacent vertices, adjacent edges, and pairs of an incident vertex and edge have distinct induced weights where the induced weight of a vertex \(v\) is \(w_f(v) = \sum f(e)\) with \(e\) ranging over all the edges incident to \(v\), and the induced weight of an edge \(uv\) is \(w_f(uv) = f(u) + f(v)\). The local total antimagic chromatic number of \(G\), denoted by \(\chi_{lt}(G)\), is the minimum number of distinct induced vertex and edge weights over all local total antimagic labelings of \(G\). In this paper, we first obtain general lower and upper bounds for \(\chi_{lt}(G)\) and sufficient conditions to construct a graph \(H\) with \(k\) pendant edges and \(\chi_{lt}(H) \in\{\Delta(H)+1, k+1\}\). We then completely characterize graphs \(G\) with \(\chi_{lt}(G)=3\). Many families of (disconnected) graphs \(H\) with \(k\) pendant edges and \(\chi_{lt}(H) \in\{\Delta(H)+1, k+1\}\) are also obtained.

Keywords: local total antimagic, local total antimagic chromatic number.

Mathematics Subject Classification: 05C78, 05C69.

Full text (pdf)

  1. I.H. Agustin, M. Hasan, Dafik, R. Alfarisi, R.M. Prihandini, Local edge antimagic coloring of graphs, Far East J. Math. Sci. 102 (2017), 1925-1941. https://doi.org/10.17654/ms102091925
  2. K. Appel, W. Haken, Every map is four colourable, Bull. Am. Math. Soc. 82 (1976), 711-712. https://doi.org/10.1090/s0002-9904-1976-14122-5
  3. S. Arumugam, K. Premalatha, M. Bača, A. Semaničová-Feňovčíková, Local antimagic vertex coloring of a graph, Graphs Combin. 33 (2017), 275-285. https://doi.org/10.1007/s00373-017-1758-7
  4. M. Behzad, Graphs and their chromatic numbers, PhD Thesis, Michigan State University, 1965.
  5. J. Bensmail, M. Senhaji, K. Szabo Lyngsie, On a combination of the 1-2-3 conjecture and the antimagic labelling conjecture, Discrete Math. Theoret. Comput. Sci. 19 (2017), no. 1, #22.
  6. J. Geetha, N. Narayanan, K. Somasundaram, Total colorings-a survey, AKCE Int. J. Graphs Comb. 20 (2023), no. 3. https://doi.org/10.1080/09728600.2023.2187960
  7. J. Haslegrave, Proof of a local antimagic conjecture, Discret. Math. Theor. Comput. Sci. 20 (2018), no. 1. https://doi.org/10.23638/DMTCS-20-1-18
  8. G.C. Lau, W.C. Shiu, On join product and local antimagic chromatic number of regular graphs, Acta Math. Hungar. 169 (2023), no. 1, 108-133. https://doi.org/10.1007/s10474-023-01298-7
  9. G.C. Lau, W.C. Shiu, On local antimagic chromatic number of lexicographic product graphs, Acta Math. Hungar. 169 (2023), no. 1, 158-170. https://doi.org/10.1007/s10474-023-01305-x
  10. G.C. Lau, W.C. Shiu, On local antimagic total labeling of complete graphs amalgamation, Opuscula Math. 43 (2023), no. 3, 429-453. https://doi.org/10.7494/opmath.2023.43.3.429
  11. G.C. Lau, H.K. Ng, W.C. Shiu, Affirmative solutions on local antimagic chromatic number, Graphs Combin. 36 (2020), 1337-1354. https://doi.org/10.1007/s00373-020-02197-2
  12. G.C. Lau, W.C. Shiu, H.K. Ng, On local antimagic chromatic number of cycle-related join graphs, Discuss. Math. Graph Theory 4 (2021), no. 1. https://doi.org/10.7151/dmgt.2177
  13. G.C. Lau, K. Schaffer, W.C. Shiu, Every graph is local antimagic total and its applications, Opuscula Math. 43 (2023), no. 6, 841-864. https://doi.org/10.7494/opmath.2023.43.6.841
  14. V. Sandhiya, M. Nalliah, Local total antimagic chromatic number of graphs, Heliyon 9 (2023), e17761. https://doi.org/10.1016/j.heliyon.2023.e17761
  15. V. Sandhiya, M. Nalliah, private communication.
  16. B. Toft, R. Wilson, A brief history of edge-colorings - with personal reminiscences, Discrete Math. Lett. 6 (2021), 38-46. https://doi.org/10.47443/dml.2021.s105
  • Communicated by Ingo Schiermeyer.
  • Received: 2024-01-30.
  • Revised: 2025-02-04.
  • Accepted: 2025-02-14.
  • Published online: 2025-03-10.
Opuscula Mathematica - cover

Cite this article as:
Gee-Choon Lau, Complete characterization of graphs with local total antimagic chromatic number 3, Opuscula Math. 45, no. 2 (2025), 199-225, https://doi.org/10.7494/OpMath.2025.45.2.199

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.