Opuscula Math. 45, no. 2 (2025), 199-225
https://doi.org/10.7494/OpMath.2025.45.2.199
Opuscula Mathematica
Complete characterization of graphs with local total antimagic chromatic number 3
Abstract. A total labeling of a graph \(G = (V, E)\) is said to be local total antimagic if it is a bijection \(f: V\cup E \to\{1,\ldots,|V|+|E|\}\) such that adjacent vertices, adjacent edges, and pairs of an incident vertex and edge have distinct induced weights where the induced weight of a vertex \(v\) is \(w_f(v) = \sum f(e)\) with \(e\) ranging over all the edges incident to \(v\), and the induced weight of an edge \(uv\) is \(w_f(uv) = f(u) + f(v)\). The local total antimagic chromatic number of \(G\), denoted by \(\chi_{lt}(G)\), is the minimum number of distinct induced vertex and edge weights over all local total antimagic labelings of \(G\). In this paper, we first obtain general lower and upper bounds for \(\chi_{lt}(G)\) and sufficient conditions to construct a graph \(H\) with \(k\) pendant edges and \(\chi_{lt}(H) \in\{\Delta(H)+1, k+1\}\). We then completely characterize graphs \(G\) with \(\chi_{lt}(G)=3\). Many families of (disconnected) graphs \(H\) with \(k\) pendant edges and \(\chi_{lt}(H) \in\{\Delta(H)+1, k+1\}\) are also obtained.
Keywords: local total antimagic, local total antimagic chromatic number.
Mathematics Subject Classification: 05C78, 05C69.
- I.H. Agustin, M. Hasan, Dafik, R. Alfarisi, R.M. Prihandini, Local edge antimagic coloring of graphs, Far East J. Math. Sci. 102 (2017), 1925-1941. https://doi.org/10.17654/ms102091925
- K. Appel, W. Haken, Every map is four colourable, Bull. Am. Math. Soc. 82 (1976), 711-712. https://doi.org/10.1090/s0002-9904-1976-14122-5
- S. Arumugam, K. Premalatha, M. Bača, A. Semaničová-Feňovčíková, Local antimagic vertex coloring of a graph, Graphs Combin. 33 (2017), 275-285. https://doi.org/10.1007/s00373-017-1758-7
- M. Behzad, Graphs and their chromatic numbers, PhD Thesis, Michigan State University, 1965.
- J. Bensmail, M. Senhaji, K. Szabo Lyngsie, On a combination of the 1-2-3 conjecture and the antimagic labelling conjecture, Discrete Math. Theoret. Comput. Sci. 19 (2017), no. 1, #22.
- J. Geetha, N. Narayanan, K. Somasundaram, Total colorings-a survey, AKCE Int. J. Graphs Comb. 20 (2023), no. 3. https://doi.org/10.1080/09728600.2023.2187960
- J. Haslegrave, Proof of a local antimagic conjecture, Discret. Math. Theor. Comput. Sci. 20 (2018), no. 1. https://doi.org/10.23638/DMTCS-20-1-18
- G.C. Lau, W.C. Shiu, On join product and local antimagic chromatic number of regular graphs, Acta Math. Hungar. 169 (2023), no. 1, 108-133. https://doi.org/10.1007/s10474-023-01298-7
- G.C. Lau, W.C. Shiu, On local antimagic chromatic number of lexicographic product graphs, Acta Math. Hungar. 169 (2023), no. 1, 158-170. https://doi.org/10.1007/s10474-023-01305-x
- G.C. Lau, W.C. Shiu, On local antimagic total labeling of complete graphs amalgamation, Opuscula Math. 43 (2023), no. 3, 429-453. https://doi.org/10.7494/opmath.2023.43.3.429
- G.C. Lau, H.K. Ng, W.C. Shiu, Affirmative solutions on local antimagic chromatic number, Graphs Combin. 36 (2020), 1337-1354. https://doi.org/10.1007/s00373-020-02197-2
- G.C. Lau, W.C. Shiu, H.K. Ng, On local antimagic chromatic number of cycle-related join graphs, Discuss. Math. Graph Theory 4 (2021), no. 1. https://doi.org/10.7151/dmgt.2177
- G.C. Lau, K. Schaffer, W.C. Shiu, Every graph is local antimagic total and its applications, Opuscula Math. 43 (2023), no. 6, 841-864. https://doi.org/10.7494/opmath.2023.43.6.841
- V. Sandhiya, M. Nalliah, Local total antimagic chromatic number of graphs, Heliyon 9 (2023), e17761. https://doi.org/10.1016/j.heliyon.2023.e17761
- V. Sandhiya, M. Nalliah, private communication.
- B. Toft, R. Wilson, A brief history of edge-colorings - with personal reminiscences, Discrete Math. Lett. 6 (2021), 38-46. https://doi.org/10.47443/dml.2021.s105
- Gee-Choon Lau
https://orcid.org/0000-0002-9777-6571
- 77D, Jalan Subuh, 85000, Johor, Malaysia
- Communicated by Ingo Schiermeyer.
- Received: 2024-01-30.
- Revised: 2025-02-04.
- Accepted: 2025-02-14.
- Published online: 2025-03-10.