Opuscula Math. 45, no. 1 (2025), 103-111
https://doi.org/10.7494/OpMath.2025.45.1.103

 
Opuscula Mathematica

Note on robust coloring of planar graphs

František Kardoš
Borut Lužar
Roman Soták

Abstract. We consider the robust chromatic number \(\chi_1(G)\) of planar graphs \(G\) and show that there exists an infinite family of planar graphs \(G\) with \(\chi_1(G) = 3\), thus solving a recent problem of Bacsó et al. from [The robust chromatic number of graphs, Graphs Combin. 40 (2024), #89].

Keywords: robust coloring, robust chromatic number, Tutte graph, planar graph.

Mathematics Subject Classification: 05C15, 05C10.

Full text (pdf)

  1. G. Bacsó, C. Bujtás, B. Patkós, Z. Tuza, M. Vizer, The robust chromatic number of certain graph classes, arXiv:2305.01927 [math.CO], (2023).
  2. G. Bacsó, B. Patkós, Z. Tuza, M. Vizer, The robust chromatic number of graphs, Graphs Combin. 40 (2024), #89. https://doi.org/10.1007/s00373-024-02817-1
  3. A. Kemnitz, M. Voigt, A note on non-4-list colorable planar graphs, Electron. J. Combin. 25 (2018), #P2.46. https://doi.org/10.37236/7320
  4. B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, 2001.
  5. B. Patkós, Z. Tuza, M. Vizer, Extremal graph theoretic questions for \(q\)-ary vectors, Graphs Combin. 40 (2024), #57. https://doi.org/10.1007/s00373-024-02787-4
  6. J. Petersen, Die Theorie der regulären Graphs, Acta Math. 15 (1891), 193-220. https://doi.org/10.1007/bf02392606
  7. M. Rosenfeld, The number of cycles in 2-factors of cubic graphs, Discrete Math. 84 (1990), 285-294. https://doi.org/10.1016/0012-365x(90)90133-3
  8. C. Thomassen, Five-coloring graphs on the torus, J. Combin. Theory Ser. B, 62 (1994) 1, 11-33. https://doi.org/10.1006/jctb.1994.1052
  9. W.T. Tutte, On Hamiltonian circuits, J. London Math. Soc. 2 (1946), 98-101. https://doi.org/10.1112/jlms/s1-21.2.98
  10. M. Voigt, private communication, 2024.
  11. H. Whitney, \(2\)-isomorphic graphs, Amer. J. Math. 55 (1933), 245-254. https://doi.org/10.2307/2371127
  • František Kardoš
  • ORCID iD https://orcid.org/0000-0002-9826-2927
  • University of Bordeaux, CNRS, LaBRI, Talence, France
  • Comenius University, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
  • Communicated by Andrzej Żak.
  • Received: 2024-07-01.
  • Revised: 2024-10-10.
  • Accepted: 2024-10-25.
  • Published online: 2024-12-20.
Opuscula Mathematica - cover

Cite this article as:
František Kardoš, Borut Lužar, Roman Soták, Note on robust coloring of planar graphs, Opuscula Math. 45, no. 1 (2025), 103-111, https://doi.org/10.7494/OpMath.2025.45.1.103

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.