Opuscula Math. 45, no. 1 (2025), 79-101
https://doi.org/10.7494/OpMath.2025.45.1.79

 
Opuscula Mathematica

On uniqueness of packing of three copies of 2-factors

Igor Grzelec
Tomáš Madaras
Alfréd Onderko

Abstract. The packing of three copies of a graph \(G\) is the union of three edge-disjoint copies (with the same vertex set) of \(G\). In this paper, we completely solve the problem of the uniqueness of packing of three copies of 2-regular graphs. In particular, we show that \(C_3,C_4,C_5,C_6\) and \(2C_3\) have no packing of three copies, \(C_7,C_8,C_3 \cup C_4, C_4 \cup C_4, C_3 \cup C_5\) and \(3C_3\) have unique packing, and any other collection of cycles has at least two distinct packings.

Keywords: uniquely packable graph, 2-factor, 3-packing.

Mathematics Subject Classification: 05C70.

Full text (pdf)

  1. P. Adams, D. Bryant, Two-factorisations of complete graphs of orders fifteen and seventeen, Australas. J. Comb. 35 (2006), 113-118.
  2. M. Aigner, S. Brandt, Embedding arbitrary graphs of maximum degree two, J. London Math. Soc. (2) (1993), 39-51. https://doi.org/10.1112/jlms/s2-48.1.39
  3. B. Bollobás, S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory Ser. B 25 (1978), 105-124. https://doi.org/10.1016/0095-8956(78)90030-8
  4. D. Burns, S. Schuster, Every \((p,p-2)\) graph is contained in its complement, J. Graph Theory 1 (1977), 277-279. https://doi.org/10.1002/jgt.3190010308
  5. D. Burns, S. Schuster, Embedding \((n,n-1)\) graphs in their complements, Israel J. Math. 30 (1978), 313-320. https://doi.org/10.1007/bf02761996
  6. C.J. Colbourn, J.H. Dinitz (eds), The CRC Handbook of Combinatorial Designs, 2nd ed., CRC Press, Boca Raton, 2006. https://doi.org/10.1201/9781420010541
  7. M. Dean, On Hamilton cycle decomposition of 6-regular circulant graphs, Graphs Combin. 22 (2006), 331-340. https://doi.org/10.1007/s00373-006-0657-0
  8. A. Deza, F. Franek, W. Hua, M. Meszka, A. Rosa, Solutions to the Oberwolfach problem for orders 18 to 40, J. Comb. Math. Comb. Comput. 74 (2010), 95-102.
  9. I. Grzelec, M. Pilśniak, M. Woźniak, A note on uniquely embeddable \(2\)-factors, Appl. Math. Comput. 468 (2024), 128505. https://doi.org/10.1016/j.amc.2023.128505
  10. A. Hagberg, P. Swart, D. Schult, Exploring network structure, dynamics, and function using NetworkX (No. LA-UR-08-05495; LA-UR-08-5495). Los Alamos National Lab. (LANL), 2008, Los Alamos, NM (United States).
  11. C. Heuberger, On planarity and colorability of circulant graphs, Discrete Math. 268 (2003), 153-169. https://doi.org/10.1016/s0012-365x(02)00685-4
  12. A.J.W. Hilton, M. Johnson, Some results on the Oberwolfach problem, J. London Math. Soc. 64 (2001), 513-522. https://doi.org/10.1112/s0024610701002666
  13. M. Meszka, R. Nedela, A. Rosa, Circulants and the chromatic index of Steiner triple systems, Math. Slovaca 56 (2006) 371-378.
  14. J. Otfinowska, M. Woźniak, A Note on Uniquely Embeddable Forests, Discuss. Math. Graph Th. 33 (2013), no. 1, 193-201. https://doi.org/10.7151/dmgt.1651
  15. N. Sauer, J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978), 295-302. https://doi.org/10.1016/0095-8956(78)90005-9
  16. H. Wang, N. Sauer, Packing three copies of a tree into a complete graph, European J. Combin. 14 (1993), 137-142. https://doi.org/10.1006/eujc.1993.1018
  17. Wolfram Research, Inc., Mathematica, Version 14.1, Champaign, IL (2024).
  18. M. Woźniak, Packing of graphs, Diss. Math. 362 (1997), pp. 78.
  19. M. Woźniak, A note on uniquely embeddable graphs, Discuss. Math. Graph Theory 18 (1998), 15-21. https://doi.org/10.7151/dmgt.1060
  20. M. Woźniak, Packing of graphs and permutation - a survey, Discrete Math. 276 (2004), 379-391. https://doi.org/10.1016/s0012-365x(03)00296-6
  21. M. Woźniak, A.P. Wojda, Triple placement of graphs, Graphs Combin. 9 (1993), 85-91. https://doi.org/10.1007/bf01195330
  22. H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988), 395-404. https://doi.org/10.1016/0012-365x(88)90232-4
  • Igor Grzelec (corresponding author)
  • ORCID iD https://orcid.org/0000-0002-1011-535X
  • AGH University of Krakow, Faculty of Applied Mathematics, Department of Discrete Mathematics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Communicated by Andrzej Żak.
  • Received: 2024-03-18.
  • Revised: 2024-09-21.
  • Accepted: 2024-10-07.
  • Published online: 2024-12-20.
Opuscula Mathematica - cover

Cite this article as:
Igor Grzelec, Tomáš Madaras, Alfréd Onderko, On uniqueness of packing of three copies of 2-factors, Opuscula Math. 45, no. 1 (2025), 79-101, https://doi.org/10.7494/OpMath.2025.45.1.79

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.