Opuscula Math. 45, no. 1 (2025), 63-78
https://doi.org/10.7494/OpMath.2025.45.1.63

 
Opuscula Mathematica

Total mutual-visibility in Hamming graphs

Csilla Bujtás
Sandi Klavžar
Jing Tian

Abstract. If \(G\) is a graph and \(X \subseteq V(G)\), then \(X\) is a total mutual-visibility set if every pair of vertices \(x\) and \(y\) of \(G\) admits the shortest \(x,y\)-path \(P\) with \(V(P) \cap X \subseteq \{x,y\}\). The cardinality of the largest total mutual-visibility set of \(G\) is the total mutual-visibility number \(\mu_{\rm t}(G)\) of \(G\). In this paper the total mutual-visibility number is studied on Hamming graphs, that is, Cartesian products of complete graphs. Different equivalent formulations for the problem are derived. The values \(\mu_{\rm t}(K_{n_1}\square K_{n_2}\square K_{n_3})\) are determined. It is proved that \(\mu_{\rm t}(K_{n_1} \square \cdots \square K_{n_r}) = O(N^{r-2})\), where \(N = n_1+\cdots + n_r\), and that \(\mu_{\rm t}(K_s^{\square r}) = \Theta(s^{r-2})\) for every \(r \geq 3\), where \(K_s^{\square r}\) denotes the Cartesian product of \(r\) copies of \(K_s\). The main theorems are also reformulated as Turán-type results on hypergraphs.

Keywords: mutual-visibility set, total mutual-visibility set, Hamming graph, Turán-type problem.

Mathematics Subject Classification: 05C12, 05C38, 05C65, 05C76.

Full text (pdf)

  1. R. Adhikary, K. Bose, M.K. Kundu, B. Sau, Mutual visibility on grid by asynchronous luminous robots, Theoret. Comput. Sci. 922 (2022), 218-247. https://doi.org/10.1016/j.tcs.2022.04.026
  2. W.G. Brown, P. Erdős, V.T. Sós, Some extremal problems on \(r\)-graphs, [in:] New directions in the theory of graphs, Proc. 3rd Ann Arbor Conference on Graph Theory, Academic Press, New York, 1973, 55-63.
  3. S. Cicerone, A. Di Fonso, G. Di Stefano, A. Navarra, The geodesic mutual visibility problem for oblivious robots: the case of trees, [in:] 24th International Conference on Distributed Computing and Networking, ACM, 2023, 150-159. https://doi.org/10.1145/3571306.3571401
  4. S. Cicerone, G. Di Stefano, S. Klavžar, On the mutual-visibility in Cartesian products and in triangle-free graphs, Appl. Math. Comput. 438 (2023), 127619. https://doi.org/10.1016/j.amc.2022.127619
  5. S. Cicerone, G. Di Stefano, S. Klavžar, I.G. Yero, Mutual-visibility in strong products of graphs via total mutual-visibility, Discrete Appl. Math. 121 (2024), 136-146. https://doi.org/10.1016/j.dam.2024.06.038
  6. G.A. Di Luna, P. Flocchini, S.G. Chaudhuri, F. Poloni, N. Santoro, G. Viglietta, Mutual visibility by luminous robots without collisions, Inform. and Comput. 254 (2017), 392-418. https://doi.org/10.1016/j.ic.2016.09.005
  7. G. Di Stefano, Mutual visibility in graphs, Appl. Math. Comput. 419 (2022), 126850. https://doi.org/10.1016/j.amc.2021.126850
  8. D. Gerbner, B. Patkós, Extremal Finite Set Theory, CRC Press, Boca Raton, FL, 2019. https://doi.org/10.1201/9780429440809
  9. R. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs, Second Edition, CRC Press, Boca Raton, FL, 2011. https://doi.org/10.1201/b10959
  10. P. Keevash, Hypergraph Turán problems, [in:] Surveys in Combinatorics, Cambridge University Press, 2011, 83-139. https://doi.org/10.1017/cbo9781139004114.004
  11. D. Kuziak, J.A. Rodríguez-Velázquez, Total mutual-visibility in graphs with emphasis on lexicographic and Cartesian products, Bull. Malays. Math. Sci. Soc. 46 (2023), 197. https://doi.org/10.1007/s40840-023-01590-3
  12. P. Poudel, A. Aljohani, G. Sharma, Fault-tolerant complete visibility for asynchronous robots with lights under one-axis agreement, Theoret. Comput. Sci. 850 (2021), 116-134. https://doi.org/10.1016/j.tcs.2020.10.033
  13. J. Tian, S. Klavžar, Graphs with total mutual-visibility number zero and total mutual-visibility in Cartesian products, Discuss. Math. Graph Theory 44 (2024), 1277-1291. https://doi.org/10.7151/dmgt.2496
  14. D.B. West, Combinatorial Mathematics, Cambridge University Press, Cambridge, 2021.
  15. K. Zarankiewicz, Problem P 101, Colloq. Math. 2 (1951), 301.
  • Csilla Bujtás (corresponding author)
  • ORCID iD https://orcid.org/0000-0002-0511-5291
  • University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
  • Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
  • Sandi Klavžar
  • ORCID iD https://orcid.org/0000-0002-1556-4744
  • University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
  • Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
  • University of Maribor, Faculty of Natural Sciences and Mathematics, Maribor, Slovenia
  • Jing Tian
  • ORCID iD https://orcid.org/0000-0002-1578-4798
  • Zhejiang University of Science and Technology, School of Science, Hangzhou, Zhejiang 310023, P.R. China
  • Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
  • Communicated by Andrzej Żak.
  • Received: 2023-08-10.
  • Revised: 2024-11-02.
  • Accepted: 2024-11-02.
  • Published online: 2024-12-20.
Opuscula Mathematica - cover

Cite this article as:
Csilla Bujtás, Sandi Klavžar, Jing Tian, Total mutual-visibility in Hamming graphs, Opuscula Math. 45, no. 1 (2025), 63-78, https://doi.org/10.7494/OpMath.2025.45.1.63

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.