Opuscula Math. 45, no. 1 (2025), 63-78
https://doi.org/10.7494/OpMath.2025.45.1.63
Opuscula Mathematica
Total mutual-visibility in Hamming graphs
Csilla Bujtás
Sandi Klavžar
Jing Tian
Abstract. If \(G\) is a graph and \(X \subseteq V(G)\), then \(X\) is a total mutual-visibility set if every pair of vertices \(x\) and \(y\) of \(G\) admits the shortest \(x,y\)-path \(P\) with \(V(P) \cap X \subseteq \{x,y\}\). The cardinality of the largest total mutual-visibility set of \(G\) is the total mutual-visibility number \(\mu_{\rm t}(G)\) of \(G\). In this paper the total mutual-visibility number is studied on Hamming graphs, that is, Cartesian products of complete graphs. Different equivalent formulations for the problem are derived. The values \(\mu_{\rm t}(K_{n_1}\square K_{n_2}\square K_{n_3})\) are determined. It is proved that \(\mu_{\rm t}(K_{n_1} \square \cdots \square K_{n_r}) = O(N^{r-2})\), where \(N = n_1+\cdots + n_r\), and that \(\mu_{\rm t}(K_s^{\square r}) = \Theta(s^{r-2})\) for every \(r \geq 3\), where \(K_s^{\square r}\) denotes the Cartesian product of \(r\) copies of \(K_s\). The main theorems are also reformulated as Turán-type results on hypergraphs.
Keywords: mutual-visibility set, total mutual-visibility set, Hamming graph, Turán-type problem.
Mathematics Subject Classification: 05C12, 05C38, 05C65, 05C76.
- R. Adhikary, K. Bose, M.K. Kundu, B. Sau, Mutual visibility on grid by asynchronous luminous robots, Theoret. Comput. Sci. 922 (2022), 218-247. https://doi.org/10.1016/j.tcs.2022.04.026
- W.G. Brown, P. Erdős, V.T. Sós, Some extremal problems on \(r\)-graphs, [in:] New directions in the theory of graphs, Proc. 3rd Ann Arbor Conference on Graph Theory, Academic Press, New York, 1973, 55-63.
- S. Cicerone, A. Di Fonso, G. Di Stefano, A. Navarra, The geodesic mutual visibility problem for oblivious robots: the case of trees, [in:] 24th International Conference on Distributed Computing and Networking, ACM, 2023, 150-159. https://doi.org/10.1145/3571306.3571401
- S. Cicerone, G. Di Stefano, S. Klavžar, On the mutual-visibility in Cartesian products and in triangle-free graphs, Appl. Math. Comput. 438 (2023), 127619. https://doi.org/10.1016/j.amc.2022.127619
- S. Cicerone, G. Di Stefano, S. Klavžar, I.G. Yero, Mutual-visibility in strong products of graphs via total mutual-visibility, Discrete Appl. Math. 121 (2024), 136-146. https://doi.org/10.1016/j.dam.2024.06.038
- G.A. Di Luna, P. Flocchini, S.G. Chaudhuri, F. Poloni, N. Santoro, G. Viglietta, Mutual visibility by luminous robots without collisions, Inform. and Comput. 254 (2017), 392-418. https://doi.org/10.1016/j.ic.2016.09.005
- G. Di Stefano, Mutual visibility in graphs, Appl. Math. Comput. 419 (2022), 126850. https://doi.org/10.1016/j.amc.2021.126850
- D. Gerbner, B. Patkós, Extremal Finite Set Theory, CRC Press, Boca Raton, FL, 2019. https://doi.org/10.1201/9780429440809
- R. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs, Second Edition, CRC Press, Boca Raton, FL, 2011. https://doi.org/10.1201/b10959
- P. Keevash, Hypergraph Turán problems, [in:] Surveys in Combinatorics, Cambridge University Press, 2011, 83-139. https://doi.org/10.1017/cbo9781139004114.004
- D. Kuziak, J.A. Rodríguez-Velázquez, Total mutual-visibility in graphs with emphasis on lexicographic and Cartesian products, Bull. Malays. Math. Sci. Soc. 46 (2023), 197. https://doi.org/10.1007/s40840-023-01590-3
- P. Poudel, A. Aljohani, G. Sharma, Fault-tolerant complete visibility for asynchronous robots with lights under one-axis agreement, Theoret. Comput. Sci. 850 (2021), 116-134. https://doi.org/10.1016/j.tcs.2020.10.033
- J. Tian, S. Klavžar, Graphs with total mutual-visibility number zero and total mutual-visibility in Cartesian products, Discuss. Math. Graph Theory 44 (2024), 1277-1291. https://doi.org/10.7151/dmgt.2496
- D.B. West, Combinatorial Mathematics, Cambridge University Press, Cambridge, 2021.
- K. Zarankiewicz, Problem P 101, Colloq. Math. 2 (1951), 301.
- Csilla Bujtás (corresponding author)
https://orcid.org/0000-0002-0511-5291
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
- Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
- Sandi Klavžar
https://orcid.org/0000-0002-1556-4744
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
- Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
- University of Maribor, Faculty of Natural Sciences and Mathematics, Maribor, Slovenia
- Jing Tian
https://orcid.org/0000-0002-1578-4798
- Zhejiang University of Science and Technology, School of Science, Hangzhou, Zhejiang 310023, P.R. China
- Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
- Communicated by Andrzej Żak.
- Received: 2023-08-10.
- Revised: 2024-11-02.
- Accepted: 2024-11-02.
- Published online: 2024-12-20.