Opuscula Math. 45, no. 1 (2025), 53-62
https://doi.org/10.7494/OpMath.2025.45.1.53

 
Opuscula Mathematica

(1,2)-PDS in graphs with the small number of vertices of large degrees

Urszula Bednarz
Mateusz Pirga

Abstract. We define and study a perfect \((1,2)\)-dominating set which is a special case of a \((1,2)\)-dominating set. We discuss the existence of a perfect \((1,2)\)-dominating set in graphs with at most two vertices of maximum degree. In particular, we present a complete solution if the maximum degree equals \(n-1\) or \(n-2\).

Keywords: domination, secondary domination, neighborhoods, maximum degree.

Mathematics Subject Classification: 05C69, 05C76.

Full text (pdf)

  1. C. Berge, The Theory of Graphs and its Applications, New York, Wiley, 1962.
  2. A. Cabrera-Martinez, A. Estrada-Moreno, Double domination in rooted product graphs, Discrete Appl. Math. 339 (2023), 127-135. https://doi.org/10.1016/j.dam.2023.06.021
  3. E.J. Cockayne, S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977), 247-261. https://doi.org/10.1002/net.3230070305
  4. R. Diestel, Graph Theory, Springer-Verlag, Heidelberg, New York, 2005.
  5. A. Hansberg, L. Volkmann, On graphs with equal domination and 2-domination numbers, Discrete Math. 308 (2008), no. 11, 2277-2281. https://doi.org/10.1016/j.disc.2007.04.057
  6. J. Harant, M.A. Henning, On double domination in graphs, Discuss. Math. Graph Theory 25 (2005), 29-34. https://doi.org/10.7151/dmgt.1256
  7. S.M. Hedetniemi, S.T. Hedetniemi, D.F. Rall, J. Knisely, Secondary domination in graphs, AKCE Int. J. Graphs Comb. 5 (2008), 117-125.
  8. C. Hoppen, G. Mansan, Minimum 2-dominating sets in regular graphs, Discrete Appl. Math. 323 (2022), 268-285. https://doi.org/10.1016/j.dam.2022.01.002
  9. C.F. de Jaenisch, Traite des applications de l’analyse mathematique au jeu desechecs, St. Petersbourg Academie Imperiale des Sciences, 1862.
  10. K. Kayathri, S. Vallirani, \((1, 2)\)-Domination in graphs, [in:] S. Arumugam, J. Bagga, L. Beineke, B. Panda (eds), Theoretical Computer Science and Discrete Mathematics, Springer, Cham, 2017, 128-133. https://doi.org/10.1007/978-3-319-64419-6_17
  11. A. Kosiorowska, A. Michalski, I. Włoch, On minimum intersections of certain secondary dominating sets in graphs, Opuscula Math. 43 (2023), no. 6, 813-827. https://doi.org/10.7494/opmath.2023.43.6.813
  12. A. Michalski, Secondary dominating sets in graphs and their modification, Book of Abstracts, The 7th Gdańsk Workshop on Graph Theory (2019).
  13. A. Michalski, P. Bednarz, On independent secondary dominating sets in generalized graph products, Symmetry 2021, 13, 2399. https://doi.org/10.3390/sym13122399
  14. A. Michalski, I. Włoch, On the existence and the number of independent \((1, 2)\)-dominating sets in the G-join of graphs, Appl. Math. Comput. 377 (2020), 125155. https://doi.org/10.1016/j.amc.2020.125155
  15. A. Michalski, I. Włoch, M. Dettlaff, M. Lemańska, On proper \((1, 2)\)-dominating sets in graphs, Math. Methods Appl. Sci. 45 (2022), no. 11, 7050-7057. https://doi.org/10.1002/mma.8223
  16. O. Ore, Theory of Graphs, vol. 38, Amer. Math. Soc., 1962. https://doi.org/10.1090/coll/038
  17. J. Raczek, Polynomial algorithm for minimal \((1, 2)\)-dominating set in networks, Electronics 2022, 11, 300. https://doi.org/10.3390/electronics11030300
  18. J. Raczek, Complexity issues on of secondary domination number, Algorithmica 86 (2024), 1163-1172. https://doi.org/10.1007/s00453-023-01192-2
  • Urszula Bednarz (corresponding author)
  • ORCID iD https://orcid.org/0000-0002-4856-9613
  • Rzeszow University of Technology, The Faculty of Mathematics and Applied Physics, Department of Discrete Mathematics, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Mateusz Pirga
  • Rzeszow University of Technology, The Faculty of Mathematics and Applied Physics, Department of Discrete Mathematics, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Communicated by Dalibor Fronček.
  • Received: 2024-05-08.
  • Revised: 2024-10-23.
  • Accepted: 2024-10-30.
  • Published online: 2024-12-20.
Opuscula Mathematica - cover

Cite this article as:
Urszula Bednarz, Mateusz Pirga, (1,2)-PDS in graphs with the small number of vertices of large degrees, Opuscula Math. 45, no. 1 (2025), 53-62, https://doi.org/10.7494/OpMath.2025.45.1.53

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.