Opuscula Math. 45, no. 1 (2025), 39-51
https://doi.org/10.7494/OpMath.2025.45.1.39

 
Opuscula Mathematica

The metric dimension of circulant graphs

Tapendra BC
Shonda Dueck

Abstract. A pair of vertices \(x\) and \(y\) in a graph \(G\) are said to be resolved by a vertex \(w\) if the distance from \(x\) to \(w\) is not equal to the distance from \(y\) to \(w\). We say that \(G\) is resolved by a subset of its vertices \(W\) if every pair of vertices in \(G\) is resolved by some vertex in \(W\). The minimum cardinality of a resolving set for \(G\) is called the metric dimension of \(G\), denoted by \(\dim(G)\). The circulant graph \(C_n(1,2,\ldots,t)\) is the Cayley graph \(Cay(\mathbb{Z}_n:\{\pm 1, \pm 2, \ldots, \pm t\})\). In this note we prove that, for \(n=2kt+2t\), \(\dim(C_n(1,2,\ldots,t))\geq t+2\), confirming Conjecture 4.1.2 in [K. Chau, S. Gosselin, The metric dimension of circulant graphs and their Cartesian products, Opuscula Math. 37 (2017), 509-534].

Keywords: metric dimension, circulant graph.

Mathematics Subject Classification: 05C12, 05C65, 05C25, 05E18.

Full text (pdf)

  1. R.F. Bailey, P.J. Cameron, Base size, metric dimension and other invariants of groups and graphs, Bull. London Math. Soc. 43 (2011), 209-242. https://doi.org/10.1112/blms/bdq096
  2. A. Borchert, S. Gosselin, The metric dimension of circulant graphs and Cayley hypergraphs, Util. Math. 106 (2018), 125-147.
  3. M. Buratti, Cayley, Marty and Schreier hypergraphs, Abh. Math. Sem. Univ. Hamburg, 64 (1994), 151-162. https://doi.org/10.1007/bf02940782
  4. J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, D.R. Wood, On the metric dimension of Cartesian products of graphs, SIAM J. Discrete Math. 21 (2007), 423-441. https://doi.org/10.1137/050641867
  5. G. Chartrand, L. Eroh, M. Johnson, O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), 99-113. https://doi.org/10.1016/s0166-218x(00)00198-0
  6. K. Chau, S. Gosselin, The metric dimension of circulant graphs and their Cartesian products, Opuscula Math. 37 (2017), 509-534. https://doi.org/10.7494/opmath.2017.37.4.509
  7. R. Gao, Y. Xiao, Z. Zhang, On the metric dimension of circulant graphs, Canad. Math. Bull. 67 (2023), 328-337. https://doi.org/10.4153/s0008439523000759
  8. C. Grigorious, P. Manuel, M. Miller, B. Rajan, S. Stephen, On the metric dimension of circulant and Harary graphs, Appl. Math. Comput. 248 (2014), 47-54. https://doi.org/10.1016/j.amc.2014.09.045
  9. F. Harary, R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976), 191-195.
  10. M. Imran, A.Q. Baig, S.A.U.H. Bokhary, I. Javaid, On the metric dimension of circulant graphs, Appl. Math. Let. 25 (2012), 320-325. https://doi.org/10.1016/j.aml.2011.09.008
  11. I. Javaid, M.T. Rahim, K. Ali, Families of regular graphs with constant metric dimension, Util. Math. 75 (2008), 21-33.
  12. S. Khuller, B. Raghavachari, A. Rosenfeld, Localization in graphs, Technical Report (1994).
  13. J. Peters-Fransen, O.R. Oellermann, The metric dimension of Cartesian products of graphs, Util. Math. 69 (2006), 33-41.
  14. S.C. Shee, On group hypergraphs, Southeast Asian Bull. Math. 14 (1990), 49-57.
  15. P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975), 549-559.
  16. P.J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci. 22 (1988), 445-455.
  17. T. Vetrík, The metric dimension of circulant graphs, Canad. Math. Bull. 60 (2017), 206-216. https://doi.org/10.4153/cmb-2016-048-1
  18. T. Vetrík, M. Imran, M. Knor, R. Škrekovski, The metric dimension of the circulant graph with \(2t\) generators can be less than \(t\), J. King Saud. Univ. Sci. 35 (2023), 102834. https://doi.org/10.1016/j.jksus.2023.102834
  • Tapendra BC
  • Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, R3B 2E9, Canada
  • Shonda Dueck (corresponding author)
  • Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, R3B 2E9, Canada
  • Communicated by Adam Paweł Wojda.
  • Received: 2023-11-21.
  • Revised: 2024-08-16.
  • Accepted: 2024-10-15.
  • Published online: 2024-12-20.
Opuscula Mathematica - cover

Cite this article as:
Tapendra BC, Shonda Dueck, The metric dimension of circulant graphs, Opuscula Math. 45, no. 1 (2025), 39-51, https://doi.org/10.7494/OpMath.2025.45.1.39

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.