Opuscula Math. 45, no. 1 (2025), 27-38
https://doi.org/10.7494/OpMath.2025.45.1.27

 
Opuscula Mathematica

Monotonic properties of Kneser solutions of second order linear differential equations with delayed argument

Blanka Baculíková

Abstract. In this paper new monotonic properties of nonoscillatory solutions for second order linear functional differential equations with delayed argument \[y{''}(t)=p(t)y(\tau(t))\] have been established. New properties are used to introduce criteria for elimination of bounded nonoscillatory solutions for studied equations.

Keywords: second order, differential equations, delayed argument, monotonic properties, oscillation.

Mathematics Subject Classification: 34K11, 34C10.

Full text (pdf)

  1. R.P. Agarwal, S.R. Grace, D. O'Regan, Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations, Kluver Academic Publishers, Dordrecht 2002. https://doi.org/10.1007/978-94-017-2515-6
  2. R.P. Agarwal, C.H. Zhang, T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput. 274 (2016), 178-181. https://doi.org/10.1016/j.amc.2015.10.089
  3. B. Baculíková, Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett. 91 (2019), 68-75. https://doi.org/10.1016/j.aml.2018.11.021
  4. B. Baculíková, Oscillatory behavior of the second order noncanonical differential equation, Electron. J. Qual. Theory Differ. Equ. 89 (2019), 1-17. https://doi.org/10.14232/ejqtde.2019.1.89
  5. B. Baculíková, Oscillation and asymptotic properties of second order half-linear differential equations with mixed deviating arguments, Mathematics 9 (2021), 1-12. https://doi.org/10.3390/math9202552
  6. B. Baculíková, J. Džurina, Asymptotic properties of even-order functional differential equations with deviating argument, Carpathian J. Math. 40 (2024), 15-23. https://doi.org/10.37193/CJM.2024.01.02
  7. M. Bohner, S.R. Grace, I. Jadlovská, Oscillation criteria for second-order neutral delay differential equations, Electron. J. Qual. Theory Differ. Equ. 60 (2017), 1-12. https://doi.org/10.14232/ejqtde.2017.1.60
  8. G. Chatzarakis, I. Jadlovská, Improved oscillation results for second-order half-linear delay differential equations, Hacet. J. Math. Stat. 48, (2019). https://doi.org/10.15672/hjms.2017.522
  9. J. Džurina, Oscillation of second-order trinomial differential equations with retarded and advanced arguments, Appl. Math. Lett. 153 (2024), 1-8. https://doi.org/10.1016/j.aml.2024.109058
  10. I. Jadlovska, Oscillation criteria of Kneser-type for second-order half-linear advanced differential equations, Appl. Math. Lett. 106 (2020), 1-8. https://doi.org/10.1016/j.aml.2020.106354
  11. I. Jadlovská, J. Džurina, Kneser-type oscillation criteria for second-order half-linear delay differential equations, Appl. Math. Comput. 380, (2020), 1-15. https://doi.org/10.1016/j.amc.2020.125289
  12. I.T. Kiguradze, T.A. Chanturia, Asymptotic Properties of Solutions of Nonatunomous Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht, 1993. https://doi.org/10.1007/978-94-011-1808-8
  13. R. Koplatadze, T.A. Chanturia, On Oscillatory Properties of Differential Equations with Deviating Arguments, Tbilisi Univ. Press, Tbilisi, 1977.
  14. R. Koplatadze, G. Kvinkadze, I.P. Stavroulakis, Properties \(A\) and \(B\) of \(n\)-th order linear differential equations with deviating argument, Georgian Math. J. 6 (1999), 553-566. https://doi.org/10.1515/gmj.1999.553
  15. T. Kusano, On even order functional differential equations with advanced and retarded arguments, J. Differential Equations 45 (1982), 75-84. https://doi.org/10.1016/0022-0396(82)90055-9
  16. T. Kusano, Oscillation of even order linear functional differential equations with deviating arguments of mixed type, J. Math. Anal. Appl. 98 (1984), 341-347. https://doi.org/10.1016/0022-247x(84)90253-1
  17. T. Kusano, B.S. Lalli, On oscillation of half-linear functional differential equations with deviating arguments, Hiroshima Math. J. 24 (1994), 549-563. https://doi.org/10.32917/hmj/1206127926
  18. G. Laddas, V. Lakshmikantham, J.S. Papadakis, B.G. Zhang, Oscillation of higher-order retarded differential equations generated by retarded argument, Delay and Functional Differential Equations and Their Applications, Academic Press, New York, 1972, 219-231. https://doi.org/10.1016/b978-0-12-627250-5.50013-7
  19. T. Li, Y. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr. 288 (2015), 1150-1162. https://doi.org/10.1002/mana.201300029
  20. M. Naito, Oscillation Criteria for Second Order Ordinary Differential Equations, Canad. Math. Bull. 63 (2020), 276-286. https://doi.org/10.4153/s0008439519000262
  21. S. Tamilvanan, E. Thandapani, J. Džurina, Oscillation of second order nonlinear differential equation with sub-linear neutral term, Differ. Equ. Appl. 9 (2017), 1-7. https://doi.org/10.7153/dea-09-03
  22. Y. Wu, Y. Yu, J. Xiao, Oscillation of second order nonlinear neutral differential equations, Mathematics 10 (2022), 1-12. https://doi.org/10.3390/math10152739
  • Blanka Baculíková
  • Technical University of Košice, Faculty of Electrical Engineering and Informatics, Department of Mathematics, Letná 9, 042 00 Košice, Slovakia
  • Communicated by Josef Diblík.
  • Received: 2024-06-26.
  • Revised: 2024-09-12.
  • Accepted: 2024-09-27.
  • Published online: 2024-12-20.
Opuscula Mathematica - cover

Cite this article as:
Blanka Baculíková, Monotonic properties of Kneser solutions of second order linear differential equations with delayed argument, Opuscula Math. 45, no. 1 (2025), 27-38, https://doi.org/10.7494/OpMath.2025.45.1.27

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.