Opuscula Math. 44, no. 6 (2024), 899-916
https://doi.org/10.7494/OpMath.2024.44.6.899

 
Opuscula Mathematica

Reverse Lieb-Thirring inequality for the half-line matrix Schrödinger operator

Ricardo Weder

Abstract. We prove a reverse Lieb-Thirring inequality with a sharp constant for the matrix Schrödinger equation on the half-line.

Keywords: spectral inequalities, matrix Schrödinger equations, Lieb-Thirring inequalities.

Mathematics Subject Classification: 34L15, 34L40, 81Q10.

Full text (pdf)

  1. T. Aktosun, R. Weder, Direct and inverse scattering for the matrix Schrödinger equation, Springer, Switzerland, 2021.
  2. T. Aktosun, R. Weder, The transformations to remove or add bound states for the half-line matrix Schrödinger operator, arXiv: 2402.12136 [math-ph] (2024). https://doi.org/10.48550/arXiv.2402.12136
  3. S. Bachman, R. Froese, S. Schraven, Two-sided Lieb-Thirring bounds, J. Spectr. Theory 13 (2023), 1445-1472. https://doi.org/10.4171/jst/488
  4. A. Ben-Israel, T.N.E. Greville, Generalized inverses Theory and applications, 2nd ed., Springer, New York, 2003.
  5. G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, AMS, Providence, RI, 2013.
  6. A. Boumenir, V.K. Tuan, A trace formula and Schminke inequality on the half-line, Proc. Amer. Math. Soc. 137 (2009), 1039-1049. https://doi.org/10.1090/s0002-9939-08-09659-7
  7. S.L. Campbell, C.D. Meyer, Generalized Inverses of Linear Transformations, SIAM, Philadelphia, 2009. https://doi.org/10.1137/1.9780898719048
  8. K. Chadan, P.C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed., Springer, New York, 1989. https://doi.org/10.1007/978-3-642-83317-5
  9. D. Damanik, C. Remling, Schrödinger operators with many bound states, Duke. Math. J. 136 (2007), 51-80. https://doi.org/10.1215/s0012-7094-07-13612-3
  10. T. Ekholm, R.L. Frank, Lieb-Thirring inequalities on the half-line with critical exponent, J. Eur. Math. Soc. 10 (2008), 739-755. https://doi.org/10.4171/jems/128
  11. P. Exner, A. Laptev, M. Usman, On some sharp spectral inequalities for Schrödinger operator on the semi axis, Comm. Math. Phys 326 (2014), 531-541. https://doi.org/10.1007/s00220-014-1885-4
  12. R.L. Frank, A. Laptev, T. Weidl, Schrödinger Operators: Eigenvalues and Lieb-Thirring Inequalities, Cambridge University Press, Cambridge, 2023. https://doi.org/10.1017/9781009218436
  13. I.M. Gel'fand, B.M. Levitan, On the determination of a differential equation from its spectral function, Izv. Akad. Nauk SSSR Ser. Mat. 15, (1951) 309-360 (in Russian) [Am. Math. Soc. Transl. (ser. 2) 1 (1951), 253-304, English translation].
  14. V. Glaser, H. Grosse, A. Martin, Bounds on the number of eigenvalues of the Schrödinger operator, Comm. Math. Phys. 59 (1978), 197-212. https://doi.org/10.1007/bf01614249
  15. D. Hundertmark, E.H. Lieb, L.E. Thomas, A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator, Adv. Theor. Math. Phys. 2 (1998), 719-731. https://doi.org/10.4310/atmp.1998.v2.n4.a2
  16. T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin, 1976. https://doi.org/10.1007/978-3-642-53393-8_9
  17. P. Kurasov, Spectral Geometry of Graphs, Birkäuser-Springer, Berlin, 2024. https://doi.org/10.1007/978-3-662-67872-5
  18. L.D. Landau, E.M. Lifschitz, Quantum Mechanics, Non Relativistic Theory, 3rd ed., Pergamon Press, New York, 1989.
  19. B.N. Levitan, Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987. https://doi.org/10.1515/9783110941937
  20. B.M. Levitan, M.G. Gasymov, Determination of a differential operator by two of its spectra, Russian Math. Surveys 19 (1964), 1-63. https://doi.org/10.1070/rm1964v019n02abeh001145
  21. E.H. Lieb, W.E. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relations to Sobolev inequalities, [in:] E.H. Lieb, A.S. Whightmann, B. Simon (eds), Studies in Mathematical Physics (Essays in Honor of Valentin Bargmann), Princeton University Press, Princeton, NJ, 1976, 269-303. https://doi.org/10.1515/9781400868940-014
  22. V.A. Marchenko, Sturm-Liouville Operators and Applications, Revised ed., MS Chelsea, Providence, RI, 2011. https://doi.org/10.1090/chel/373
  23. M. Reed, B. Simon, Methods of Modern Mathematical Physics IV Analysis of Operators, Academic Press, New York, 1978.
  24. L. Schimmer, Improved spectral inequalities for Schrödinger operators on the semi-axis, J. Spectr. Theory 13 (2023), 47-62. https://doi.org/10.4171/jst/434
  25. U.-W. Schmincke, On Schrödinger's factorization method for Sturm-Liouville operators, Proc. Royal Soc. Edinburgh 80 A (1978), 67-84. https://doi.org/10.1017/s0308210500010143
  26. T. Weidl, On the Lieb-Thirring constant \(L_{\gamma,1}\) for \( \gamma \geq 1/2\), Comm. Math. Phys. 178 (1996), 135-146. https://doi.org/10.1007/bf02104912
  • Ricardo Weder
  • ORCID iD https://orcid.org/0000-0003-3993-4698
  • Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-126, IIMAS-UNAM, Ciudad de México, CP 01000, México
  • Communicated by Jussi Behrndt.
  • Received: 2024-05-07.
  • Revised: 2024-08-02.
  • Accepted: 2024-08-05.
  • Published online: 2024-10-11.
Opuscula Mathematica - cover

Cite this article as:
Ricardo Weder, Reverse Lieb-Thirring inequality for the half-line matrix Schrödinger operator, Opuscula Math. 44, no. 6 (2024), 899-916, https://doi.org/10.7494/OpMath.2024.44.6.899

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.