Opuscula Math. 44, no. 6 (2024), 899-916
https://doi.org/10.7494/OpMath.2024.44.6.899
Opuscula Mathematica
Reverse Lieb-Thirring inequality for the half-line matrix Schrödinger operator
Abstract. We prove a reverse Lieb-Thirring inequality with a sharp constant for the matrix Schrödinger equation on the half-line.
Keywords: spectral inequalities, matrix Schrödinger equations, Lieb-Thirring inequalities.
Mathematics Subject Classification: 34L15, 34L40, 81Q10.
- T. Aktosun, R. Weder, Direct and inverse scattering for the matrix Schrödinger equation, Springer, Switzerland, 2021.
- T. Aktosun, R. Weder, The transformations to remove or add bound states for the half-line matrix Schrödinger operator, arXiv: 2402.12136 [math-ph] (2024). https://doi.org/10.48550/arXiv.2402.12136
- S. Bachman, R. Froese, S. Schraven, Two-sided Lieb-Thirring bounds, J. Spectr. Theory 13 (2023), 1445-1472. https://doi.org/10.4171/jst/488
- A. Ben-Israel, T.N.E. Greville, Generalized inverses Theory and applications, 2nd ed., Springer, New York, 2003.
- G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, AMS, Providence, RI, 2013.
- A. Boumenir, V.K. Tuan, A trace formula and Schminke inequality on the half-line, Proc. Amer. Math. Soc. 137 (2009), 1039-1049. https://doi.org/10.1090/s0002-9939-08-09659-7
- S.L. Campbell, C.D. Meyer, Generalized Inverses of Linear Transformations, SIAM, Philadelphia, 2009. https://doi.org/10.1137/1.9780898719048
- K. Chadan, P.C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed., Springer, New York, 1989. https://doi.org/10.1007/978-3-642-83317-5
- D. Damanik, C. Remling, Schrödinger operators with many bound states, Duke. Math. J. 136 (2007), 51-80. https://doi.org/10.1215/s0012-7094-07-13612-3
- T. Ekholm, R.L. Frank, Lieb-Thirring inequalities on the half-line with critical exponent, J. Eur. Math. Soc. 10 (2008), 739-755. https://doi.org/10.4171/jems/128
- P. Exner, A. Laptev, M. Usman, On some sharp spectral inequalities for Schrödinger operator on the semi axis, Comm. Math. Phys 326 (2014), 531-541. https://doi.org/10.1007/s00220-014-1885-4
- R.L. Frank, A. Laptev, T. Weidl, Schrödinger Operators: Eigenvalues and Lieb-Thirring Inequalities, Cambridge University Press, Cambridge, 2023. https://doi.org/10.1017/9781009218436
- I.M. Gel'fand, B.M. Levitan, On the determination of a differential equation from its spectral function, Izv. Akad. Nauk SSSR Ser. Mat. 15, (1951) 309-360 (in Russian) [Am. Math. Soc. Transl. (ser. 2) 1 (1951), 253-304, English translation].
- V. Glaser, H. Grosse, A. Martin, Bounds on the number of eigenvalues of the Schrödinger operator, Comm. Math. Phys. 59 (1978), 197-212. https://doi.org/10.1007/bf01614249
- D. Hundertmark, E.H. Lieb, L.E. Thomas, A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator, Adv. Theor. Math. Phys. 2 (1998), 719-731. https://doi.org/10.4310/atmp.1998.v2.n4.a2
- T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin, 1976. https://doi.org/10.1007/978-3-642-53393-8_9
- P. Kurasov, Spectral Geometry of Graphs, Birkäuser-Springer, Berlin, 2024. https://doi.org/10.1007/978-3-662-67872-5
- L.D. Landau, E.M. Lifschitz, Quantum Mechanics, Non Relativistic Theory, 3rd ed., Pergamon Press, New York, 1989.
- B.N. Levitan, Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987. https://doi.org/10.1515/9783110941937
- B.M. Levitan, M.G. Gasymov, Determination of a differential operator by two of its spectra, Russian Math. Surveys 19 (1964), 1-63. https://doi.org/10.1070/rm1964v019n02abeh001145
- E.H. Lieb, W.E. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relations to Sobolev inequalities, [in:] E.H. Lieb, A.S. Whightmann, B. Simon (eds), Studies in Mathematical Physics (Essays in Honor of Valentin Bargmann), Princeton University Press, Princeton, NJ, 1976, 269-303. https://doi.org/10.1515/9781400868940-014
- V.A. Marchenko, Sturm-Liouville Operators and Applications, Revised ed., MS Chelsea, Providence, RI, 2011. https://doi.org/10.1090/chel/373
- M. Reed, B. Simon, Methods of Modern Mathematical Physics IV Analysis of Operators, Academic Press, New York, 1978.
- L. Schimmer, Improved spectral inequalities for Schrödinger operators on the semi-axis, J. Spectr. Theory 13 (2023), 47-62. https://doi.org/10.4171/jst/434
- U.-W. Schmincke, On Schrödinger's factorization method for Sturm-Liouville operators, Proc. Royal Soc. Edinburgh 80 A (1978), 67-84. https://doi.org/10.1017/s0308210500010143
- T. Weidl, On the Lieb-Thirring constant \(L_{\gamma,1}\) for \( \gamma \geq 1/2\), Comm. Math. Phys. 178 (1996), 135-146. https://doi.org/10.1007/bf02104912
- Ricardo Weder
https://orcid.org/0000-0003-3993-4698
- Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-126, IIMAS-UNAM, Ciudad de México, CP 01000, México
- Communicated by Jussi Behrndt.
- Received: 2024-05-07.
- Revised: 2024-08-02.
- Accepted: 2024-08-05.
- Published online: 2024-10-11.