Opuscula Math. 44, no. 6 (2024), 883-898
https://doi.org/10.7494/OpMath.2024.44.6.883
Opuscula Mathematica
On expansive three-isometries
Abstract. The sub-Brownian 3-isometries in Hilbert spaces are the natural counterparts of the 2-isometries, because all of them have Brownian-type extensions in the sense of J. Agler and M. Stankus. We show that all powers \(T^n\) for \(n\geq 2\) of every expansive 3-isometry \(T\) are sub-Brownian, even if \(T\) does not have such a property. This fact induces some useful relations between the corresponding covariance operators of \(T\). We analyze two matrix representations of \(T\) in order to get some conditions under which \(T\) is sub-Brownian, or \(T\) admits the Wold-type decomposition in the sense of S. Shimorin. We show that the restriction of \(T\) to its range is sub-Brownian of McCullough's type, and that under some conditions on \(\mathcal{N}(T^*)\), \(T\) itself is sub-Brownian, and it admits the Wold-type decomposition.
Keywords: Wold decomposition, 3-isometry, sub-Brownian 3-isometry.
Mathematics Subject Classification: 47A05, 47A15, 47A20, 47A63.
- J. Agler, An abstract approach to model theory, [in:] Survey of Some Recent Results in Operator Theory, vol. II, Pitman Res. Notes Math. Ser. 192, 1-23.
- J. Agler, M. Stankus, \(m\)-isometric transformations of Hilbert spaces, Integral Equations Operator Theory 21 (1995), 383-429. https://doi.org/10.1007/bf01222016
- J. Agler, M. Stankus, \(m\)-isometric transformations of Hilbert spaces, II, Integral Equations Operator Theory 23 (1995), 1-48. https://doi.org/10.1007/bf01261201
- J. Agler, M. Stankus, \(m\)-isometric transformations of Hilbert spaces, III, Integral Equations Operator Theory 24 (1996), 379-421. https://doi.org/10.1007/bf01191619
- A. Aleman, The multiplication operator on Hilbert spaces of analytic functions, Habilitationsschrift, Fern Universität, Hagen, 1993.
- A. Crăciunescu, L. Suciu, Brownian extensions in the context of three-isometries, J. Math. Anal. Appl. 529 (2024), 127591. https://doi.org/10.1016/j.jmaa.2023.127591
- J. Kośmider, The Wold-type decomposition for \(m\)-isometries, Bull. Malays. Math. Sci. Soc. 44 (2021), 4155-4174. https://doi.org/10.1007/s40840-021-01129-4
- W. Majdak, L. Suciu, Brownian type parts of operators in Hilbert spaces, Results Math. 75 (2020), Article 5. https://doi.org/10.1007/s00025-019-1130-8
- S. McCullough, SubBrownian operators, J. Oper. Theory 22 (1989), 291-305.
- S. Shimorin, Wold-type decompositions and wandering subspaces for operators close to isometries J. Reine Angew. Math. 531 (2001), 147-189. https://doi.org/10.1515/crll.2001.013
- Laurian Suciu
https://orcid.org/0000-0002-5675-0519
- Universitatea Lucian Blaga din Sibiu, Departamentul de Matematica si Informatica, Sibiu, Romania
- Communicated by Aurelian Gheondea.
- Received: 2024-03-07.
- Revised: 2024-09-09.
- Accepted: 2024-09-14.
- Published online: 2024-10-11.