Opuscula Math. 44, no. 6 (2024), 815-825
https://doi.org/10.7494/OpMath.2024.44.6.815

 
Opuscula Mathematica

Facial graceful coloring of plane graphs

Július Czap

Abstract. Let \(G\) be a plane graph. Two edges of \(G\) are facially adjacent if they are consecutive on the boundary walk of a face of \(G\). A facial edge coloring of \(G\) is an edge coloring such that any two facially adjacent edges receive different colors. A facial graceful \(k\)-coloring of \(G\) is a proper vertex coloring \(c:V(G)\rightarrow\{1,2,\dots,k\}\) such that the induced edge coloring \(c^{\prime}:E(G)\rightarrow\{1,2,\dots,k-1\}\) defined by \(c^{\prime(uv)}=|c(u)-c(v)|\) is a facial edge coloring. The minimum integer \(k\) for which \(G\) has a facial graceful \(k\)-coloring is denoted by \(\chi_{fg}(G)\). In this paper we prove that \(\chi_{fg}(G)\leq 14\) for every plane graph \(G\) and \(\chi_{fg}(H)\leq 9\) for every outerplane graph \(H\). Moreover, we give exact bounds for cacti and trees.

Keywords: facial edge coloring, plane graph.

Mathematics Subject Classification: 05C10, 05C15.

Full text (pdf)

  1. M.L. Asy'ari, Dafik, I.H. Agustin, R. Nisviasari, R. Adawiyah, On graceful chromatic number of some graphs, J. Phys.: Conf. Ser. 2157 (2022), 012013. https://doi.org/10.1088/1742-6596/2157/1/012013
  2. R. Alfarisi, Dafik, R.M. Prihandini, R. Adawiyah, E.R. Albirri, I.H. Agustin, Graceful chromatic number of unicyclic graphs, J. Phys.: Conf. Ser. 1306 (2019), 012039. https://doi.org/10.1088/1742-6596/1306/1/012039
  3. Z. Bi, A. Byers, S. English, E. Laforge, P. Zhang, Graceful colorings of graphs, J. Combin. Math. Combin. Comput. 101 (2017), 101-119.
  4. Z. Bi, A. Byers, P. Zhang, Revisiting graceful labelings of graphs, J. Combin. Math. Combin. Comput. 102 (2017), 141-158.
  5. J. Czap, S. Jendroľ, Facially-constrained colorings of plane graphs: a survey, Discrete Math. 340 (2017), 2691-2703. https://doi.org/10.1016/j.disc.2016.07.026
  6. J. Czap, S. Jendroľ, Facial colorings of plane graphs, J. Interconnect. Netw. 19 (2019), 1940003. https://doi.org/10.1142/s0219265919400036
  7. S. English, P. Zhang, On graceful colorings of trees, Math. Bohem. 142 (2017), 57-73. https://doi.org/10.21136/mb.2017.0035-15
  8. P. Erdős, P. Turán, On some sequences of integers, J. Lond. Math. Soc. 11 (1936), no. 4, 261-264. https://doi.org/10.1112/jlms/s1-11.4.261
  9. J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2023), #DS6. https://doi.org/10.37236/11668
  10. S. Khoirunnisa, Dafik, A.I. Kristiana, R. Alfarisi, E.R. Albirri, On graceful chromatic number of comb product of ladder graph, J. Phys.: Conf. Ser. 1836 (2021), 012027. https://doi.org/10.1088/1742-6596/1836/1/012027
  11. D. Kráľ, T. Madaras, R. Škrekovski, Cyclic, diagonal and facial colorings, European J. Combin. 26 (2005), 473-490. https://doi.org/10.1016/j.ejc.2004.01.016
  12. A.I. Kristiana, D. Setyawan, E.R. Albirri, R.M. Prihandini, R. Alfarisi, On graceful coloring of generalized Petersen graphs, Discrete Math. Algorithms Appl. (2023), 2350097. https://doi.org/10.1142/s1793830923500970
  13. D. Laavanya, S.D. Yamini, A structural approach to the graceful coloring of a subclass of trees, Heliyon 9 (2023), e19563. https://doi.org/10.1016/j.heliyon.2023.e19563
  14. R. Mincu, C. Obreja, A. Popa, The graceful chromatic number for some particular classes of graphs, Int. Symp. SYNASC (2019), 109-115. https://doi.org/10.1109/synasc49474.2019.00024
  15. M. Montassier, A. Raspaud, A note on \(2\)-facial coloring of plane graphs, Inform. Process. Lett. 98 (2006), 235-241. https://doi.org/10.1016/j.ipl.2006.02.013
  16. C. Obreja, Results on graceful chromatic number for particular graphs, Int. Symp. SYNASC (2020), 109-116. https://doi.org/10.1109/synasc51798.2020.00028
  17. A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Int. Symp. Rome 1966), (1967), 349-355.
  18. T.L. Saaty, P.C. Kainen, The Four-Color Problem, Assaults and Conquest, McGraw-Hill, London, 1977.
  19. I.N. Suparta, Y. Lin, R. Hasni, I.N. Budayana, On odd-graceful coloring of graphs, Commun. Comb. Optim. (2023). https://doi.org/10.22049/CCO.2023.28736.1692
  20. I.N. Suparta, M. Venkathacalam, I.G.A. Gunadi, P.A.C. Pratama, Graceful chromatic number of some Cartesian product graphs, Ural Math. J. 9 (2023), 193-208. https://doi.org/10.15826/umj.2023.2.016
  • Július Czap
  • ORCID iD https://orcid.org/0000-0002-9933-5884
  • Technical University of Košice, Faculty of Economics, Department of Applied Mathematics and Business Informatics, Němcovej 32, 040 01 Košice, Slovakia
  • Communicated by Adam Paweł Wojda.
  • Received: 2024-02-29.
  • Accepted: 2024-07-02.
  • Published online: 2024-10-11.
Opuscula Mathematica - cover

Cite this article as:
Július Czap, Facial graceful coloring of plane graphs, Opuscula Math. 44, no. 6 (2024), 815-825, https://doi.org/10.7494/OpMath.2024.44.6.815

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.