Opuscula Math. 44, no. 6 (2024), 815-825
https://doi.org/10.7494/OpMath.2024.44.6.815
Opuscula Mathematica
Facial graceful coloring of plane graphs
Abstract. Let \(G\) be a plane graph. Two edges of \(G\) are facially adjacent if they are consecutive on the boundary walk of a face of \(G\). A facial edge coloring of \(G\) is an edge coloring such that any two facially adjacent edges receive different colors. A facial graceful \(k\)-coloring of \(G\) is a proper vertex coloring \(c:V(G)\rightarrow\{1,2,\dots,k\}\) such that the induced edge coloring \(c^{\prime}:E(G)\rightarrow\{1,2,\dots,k-1\}\) defined by \(c^{\prime(uv)}=|c(u)-c(v)|\) is a facial edge coloring. The minimum integer \(k\) for which \(G\) has a facial graceful \(k\)-coloring is denoted by \(\chi_{fg}(G)\). In this paper we prove that \(\chi_{fg}(G)\leq 14\) for every plane graph \(G\) and \(\chi_{fg}(H)\leq 9\) for every outerplane graph \(H\). Moreover, we give exact bounds for cacti and trees.
Keywords: facial edge coloring, plane graph.
Mathematics Subject Classification: 05C10, 05C15.
- M.L. Asy'ari, Dafik, I.H. Agustin, R. Nisviasari, R. Adawiyah, On graceful chromatic number of some graphs, J. Phys.: Conf. Ser. 2157 (2022), 012013. https://doi.org/10.1088/1742-6596/2157/1/012013
- R. Alfarisi, Dafik, R.M. Prihandini, R. Adawiyah, E.R. Albirri, I.H. Agustin, Graceful chromatic number of unicyclic graphs, J. Phys.: Conf. Ser. 1306 (2019), 012039. https://doi.org/10.1088/1742-6596/1306/1/012039
- Z. Bi, A. Byers, S. English, E. Laforge, P. Zhang, Graceful colorings of graphs, J. Combin. Math. Combin. Comput. 101 (2017), 101-119.
- Z. Bi, A. Byers, P. Zhang, Revisiting graceful labelings of graphs, J. Combin. Math. Combin. Comput. 102 (2017), 141-158.
- J. Czap, S. Jendroľ, Facially-constrained colorings of plane graphs: a survey, Discrete Math. 340 (2017), 2691-2703. https://doi.org/10.1016/j.disc.2016.07.026
- J. Czap, S. Jendroľ, Facial colorings of plane graphs, J. Interconnect. Netw. 19 (2019), 1940003. https://doi.org/10.1142/s0219265919400036
- S. English, P. Zhang, On graceful colorings of trees, Math. Bohem. 142 (2017), 57-73. https://doi.org/10.21136/mb.2017.0035-15
- P. Erdős, P. Turán, On some sequences of integers, J. Lond. Math. Soc. 11 (1936), no. 4, 261-264. https://doi.org/10.1112/jlms/s1-11.4.261
- J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2023), #DS6. https://doi.org/10.37236/11668
- S. Khoirunnisa, Dafik, A.I. Kristiana, R. Alfarisi, E.R. Albirri, On graceful chromatic number of comb product of ladder graph, J. Phys.: Conf. Ser. 1836 (2021), 012027. https://doi.org/10.1088/1742-6596/1836/1/012027
- D. Kráľ, T. Madaras, R. Škrekovski, Cyclic, diagonal and facial colorings, European J. Combin. 26 (2005), 473-490. https://doi.org/10.1016/j.ejc.2004.01.016
- A.I. Kristiana, D. Setyawan, E.R. Albirri, R.M. Prihandini, R. Alfarisi, On graceful coloring of generalized Petersen graphs, Discrete Math. Algorithms Appl. (2023), 2350097. https://doi.org/10.1142/s1793830923500970
- D. Laavanya, S.D. Yamini, A structural approach to the graceful coloring of a subclass of trees, Heliyon 9 (2023), e19563. https://doi.org/10.1016/j.heliyon.2023.e19563
- R. Mincu, C. Obreja, A. Popa, The graceful chromatic number for some particular classes of graphs, Int. Symp. SYNASC (2019), 109-115. https://doi.org/10.1109/synasc49474.2019.00024
- M. Montassier, A. Raspaud, A note on \(2\)-facial coloring of plane graphs, Inform. Process. Lett. 98 (2006), 235-241. https://doi.org/10.1016/j.ipl.2006.02.013
- C. Obreja, Results on graceful chromatic number for particular graphs, Int. Symp. SYNASC (2020), 109-116. https://doi.org/10.1109/synasc51798.2020.00028
- A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Int. Symp. Rome 1966), (1967), 349-355.
- T.L. Saaty, P.C. Kainen, The Four-Color Problem, Assaults and Conquest, McGraw-Hill, London, 1977.
- I.N. Suparta, Y. Lin, R. Hasni, I.N. Budayana, On odd-graceful coloring of graphs, Commun. Comb. Optim. (2023). https://doi.org/10.22049/CCO.2023.28736.1692
- I.N. Suparta, M. Venkathacalam, I.G.A. Gunadi, P.A.C. Pratama, Graceful chromatic number of some Cartesian product graphs, Ural Math. J. 9 (2023), 193-208. https://doi.org/10.15826/umj.2023.2.016
- Július Czap
https://orcid.org/0000-0002-9933-5884
- Technical University of Košice, Faculty of Economics, Department of Applied Mathematics and Business Informatics, Němcovej 32, 040 01 Košice, Slovakia
- Communicated by Adam Paweł Wojda.
- Received: 2024-02-29.
- Accepted: 2024-07-02.
- Published online: 2024-10-11.