Opuscula Math. 44, no. 6 (2024), 773-788
https://doi.org/10.7494/OpMath.2024.44.6.773

 
Opuscula Mathematica

Closure results for arbitrarily partitionable graphs

Julien Bensmail

Abstract. A well-known result of Bondy and Chvátal establishes that a graph of order \(n\) is Hamiltonian if and only if its \(n\)-closure (obtained through repeatedly adding an edge joining any two non-adjacent vertices with degree sum at least \(n\)) also is. In this work, we investigate such closure results for arbitrarily partitionable graphs, a weakening of Hamiltonian graphs being those graphs that can be partitioned into arbitrarily many connected graphs of arbitrary orders. Among other results, we establish closure results for arbitrary partitions into connected graphs of order at most 3, for arbitrary partitions into connected graphs of order exactly any \(\lambda\), and for the property of being arbitrarily partitionable in full.

Keywords: connected partition, arbitrarily partitionable graph, closure, traceability.

Mathematics Subject Classification: 05C99, 68R10.

Full text (pdf)

  1. D. Barth, O. Baudon, J. Puech, Decomposable trees: a polynomial algorithm for tripodes, Discrete Appl. Math. 119 (2002), no. 3, 205-216. https://doi.org/10.1016/s0166-218x(00)00322-x
  2. D. Barth, H. Fournier, A degree bound on decomposable trees, Discrete Math. 306 (2006), no. 5, 469-477. https://doi.org/10.1016/j.disc.2006.01.006
  3. J. Bensmail, On three polynomial kernels of sequences for arbitrarily partitionable graphs, Discrete Appl. Math. 202 (2016), 19-29. https://doi.org/10.1016/j.dam.2015.08.016
  4. J. Bensmail, Toughness properties of arbitrarily partitionable graphs, Université Côte d'Azur, 2023.
  5. J. Bensmail, A \(\sigma_3\) condition for arbitrarily partitionable graphs, Discuss. Math. Graph Theory 44 (2024), no. 2, 755-776. https://doi.org/10.7151/dmgt.2471
  6. J. Bensmail, B. Li, More aspects of arbitrarily partitionable graphs, Discuss. Math. Graph Theory 42 (2022), no. 4, 1237-1261. https://doi.org/10.7151/dmgt.2343
  7. J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976), no. 2, 111-135. https://doi.org/10.1016/0012-365x(76)90078-9
  8. H. Broersma, D. Kratsch, G.J. Woeginger, Fully decomposable split graphs, European J. Combin. 34 (2013), no. 3, 567-575. https://doi.org/10.1016/j.ejc.2011.09.044
  9. H. Broersma, Z. Ryjáček, I. Schiermeyer, Closure concepts: a survey, Graphs Combin. 16 (2000), 17-48. https://doi.org/10.1007/s003730050002
  10. C. Buchanan, B. Du Preez, K.E. Perry, P. Rombach, Toughness of recursively partitionable graphs, Theory Appl. Graphs 10 (2023), no. 2, Article 4. https://doi.org/10.20429/tag.2023.10204
  11. G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. (3) 2 (1952), 69-81. https://doi.org/10.1112/plms/s3-2.1.69
  12. M. Horňák, A. Marczyk, I. Schiermeyer, M. Woźniak, Dense arbitrarily vertex decomposable graphs, Graphs Combin. 28 (2012), 807-821. https://doi.org/10.1007/s00373-011-1077-3
  13. M. Horňák, M. Woźniak, On arbitrarily vertex decomposable trees, Discrete Math. 308 (2008), no. 7, 1268-1281. https://doi.org/10.1016/j.disc.2007.04.008
  14. R. Kalinowski, M. Pilśniak, I. Schiermeyer, M. Woźniak, Dense arbitrarily partitionable graphs, Discuss. Math. Graph Theory 36 (2016), 5-22. https://doi.org/10.7151/dmgt.1833
  15. F. Liu, B. Wu, J. Meng, Arbitrarily partitionable \(\{2K_2,C_4\}\)-free graphs, Discuss. Math. Graph Theory 42 (2022), 485-500. https://doi.org/10.7151/dmgt.2289
  16. A. Marczyk, A note on arbitrarily vertex decomposable graphs, Opuscula Math. 26 (2006), no. 1, 109-118.
  17. A. Marczyk, An Ore-type condition for arbitrarily vertex decomposable graphs, Discrete Math. 309 (2009), 3588-3594. https://doi.org/10.1016/j.disc.2007.12.066
  18. O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960), 55. https://doi.org/10.2307/2308928
  19. M.D. Plummer, A. Saito, Closure and factor-critical graphs, Discrete Math. 215 (2000), 171-179. https://doi.org/10.1016/s0012-365x(99)00234-4
  20. R. Ravaux, Decomposing trees with large diameter, Theor. Comput. Sci. 411 (2010), 3068-3072. https://doi.org/10.1016/j.tcs.2010.04.032
  21. W.T. Tutte, The factorization of locally finite graphs, Canad. J. Math. 2 (1950), 44-49. https://doi.org/10.4153/cjm-1950-005-2
  • Communicated by Ingo Schiermeyer.
  • Received: 2024-03-26.
  • Revised: 2024-07-29.
  • Accepted: 2024-09-09.
  • Published online: 2024-10-11.
Opuscula Mathematica - cover

Cite this article as:
Julien Bensmail, Closure results for arbitrarily partitionable graphs, Opuscula Math. 44, no. 6 (2024), 773-788, https://doi.org/10.7494/OpMath.2024.44.6.773

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.