Opuscula Math. 44, no. 5 (2024), 727-748
https://doi.org/10.7494/OpMath.2024.44.5.727

 
Opuscula Mathematica

Wintner-type nonoscillation theorems for conformable linear Sturm-Liouville differential equations

Kazuki Ishibashi

Abstract. In this study, we addressed the nonoscillation of th Sturm-Liouville differential equation with a differential operator, which corresponds to a proportional-derivative controller. The equation is a conformable linear differential equation. A Wintner-type nonoscillation theorem was established to be applied to such equations. Using this theorem, we provided a sharp nonoscillation condition that guarantees that all nontrivial solutions to Euler-type conformable linear equations do not oscillate. The main nonoscillation theorems can be proven by introducing a Riccati inequality, which corresponds to the conformable linear equation of the Sturm-Liouville type.

Keywords: nonoscillation, conformable differential equation, proportional-derivative controller, Riccati technique, Euler equation.

Mathematics Subject Classification: 34C10, 26A24.

Full text (pdf)

  1. T. Abdeljawad, On conformable fractional calculus, J. Comp. Appl. Math. 279 (2015), 57-66. https://doi.org/10.1016/j.cam.2014.10.016
  2. M. Abu-Shady, M.K. Kaabar, A generalized definition of the fractional derivative with applications, Math. Probl. Eng. 2021 (2021), 9444803. https://doi.org/10.1155/2021/9444803
  3. R.P. Agarwal, S.R. Grace, D. O'Regan, Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002. https://doi.org/10.1007/978-94-017-2515-6
  4. K. Ahmed, C. Ahmed, H. Khalid, O. Mohamed, A new conformable fractional derivative and applications, Int. J. Differ. Equ. 2021 (2021), 6245435. http://doi.10.1155/2021/6245435
  5. P. Ahuja, A. Ujlayan, D. Sharma, H. Pratap, Deformable Laplace transform and its application, Nonlinear Eng. 12 (2023), 20220278. https://doi.org/10.1515/nleng-2022-0278
  6. N. Aliman, R. Ramli, S.M. Haris, M.S. Amiri, M. Van, A robust adaptive-fuzzy-proportional-derivative controller for a rehabilitation lower limb exoskeleton, Eng. Sci. Technol. Int. J. 35 (2022), 101097. https://doi.org/10.1016/j.jestch.2022.101097
  7. D.R. Anderson, Second-order self-adjoint differential equations using a proportional-derivative controller, Appl. Nonlinear Anal. 24 (2017), 17-48. https://doi.org/10.48550/arXiv.1607.07354
  8. D.R. Anderson, Even-order self-adjoint boundary value problems for proportional derivatives, Electron. J. Differential Equations 2017 (2017), 1-18.
  9. D.R. Anderson, S.G. Georgiev, Conformable Dynamic Equations on Time Scales, CRC Press, Boca Raton, FL, 2020. https://doi.org/10.1201/9781003057406
  10. D.R. Anderson, D.J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl. 10 (2015), 109-137.
  11. F.A. Çetinkaya, T. Cuchta, Sturm-Liouville and Riccati conformable dynamic equations, Adv. Dyn. Syst. Appl. 15 (2020), 1-13.
  12. F. Çetinkaya, A review of the evolution of the conformable derivatives, Funct. Differ. Equ. 29 (2022), 23-37. https://doi.org/10.26351/FDE/29/1-2/2
  13. H. Chhabra, V. Mohan, A. Rani, V. Singh, Robust nonlinear fractional order fuzzy PD plus fuzzy I controller applied to robotic manipulator, Neural Comput. Appl. 32 (2020), 2055-2079. https://doi.org/10.1007/s00521-019-04074-3
  14. O. Došlý, Methods of oscillation theory of half-linear second order differential equations, Czechoslovak Math. J. 50 (2000), 657-671. https://doi.org/10.1023/A:1022854131381
  15. O. Došlý, P. Řehák, Half-linear Differential Equations, North-Holland Mathematics Studies, vol. 202, Amsterdam, 2005.
  16. F. Gao, C. Chi, Improvement on conformable fractional derivative and its applications in fractional differential equations, J. Funct. Spaces 2020 (2020), 5852414. https://doi.org/10.1155/2020/5852414
  17. K. Ishibashi, Hille-Nehari type non-oscillation criteria for half-linear dynamic equations with mixed derivatives on a time scale, Electron. J. Differential Equations 2021 (2021), Article no. 78, pp. 15. https://doi.org/10.58997/ejde.2021.78
  18. K. Ishibashi, Nonoscillation of damped linear differential equations with a proportional derivative controller and its application to Whittaker-Hill-type and Mathieu-type equations, Opuscula Math. 43 (2023), 67-79. https://doi.org/10.7494/OpMath.2023.43.1.67
  19. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
  20. A. Kneser, Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann. 44 (1893), 409-435.
  21. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
  22. R.A. Moore, The behavior of solutions of a linear differential equation of second order, Pacific J. Math. 5 (1955), 125-145. https://doi.org/10.2140/PJM.1955.5.125
  23. M.D. Ortigueira, J.T. Machado, What is a fractional derivative?, J. Comput. Phys. 293 (2015), 4-13. https://doi.org/10.1016/j.jcp.2014.07.019
  24. C.A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Mathematics in Science and Engineering, vol. 48, Academic Press, New York - London, 1968.
  25. A. Wintner, On the non-existence of conjugate points, Amer. J. Math. 73 (1951), 368-380. https://doi.org/10.2307/2372182
  26. S.D. Wray, Integral comparison theorems in oscillation theory, J. Lond. Math. Soc. (2) 8 (1974), 595-606. https://doi.org/10.1112/jlms/s2-8.4.595
  27. F. Wu, J. Sugie, A new application method for nonoscillation criteria of Hille-Wintner type, Monatsh. Math. 183 (2017), 201-218. https://doi.org/10.1007/s00605-016-0972-3
  28. L.G. Zivlaei, A.B. Mingarelli, On the basic theory of some generalized and fractional derivatives, Fractal and Fractional 6 (2022), 672. https://doi.org/10.3390/fractalfract6110672
  • Kazuki Ishibashi
  • ORCID iD https://orcid.org/0000-0003-1812-9980
  • Department of Electrical Systems Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
  • Communicated by Josef Diblík.
  • Received: 2024-05-13.
  • Revised: 2024-05-31.
  • Accepted: 2024-06-01.
  • Published online: 2024-07-01.
Opuscula Mathematica - cover

Cite this article as:
Kazuki Ishibashi, Wintner-type nonoscillation theorems for conformable linear Sturm-Liouville differential equations, Opuscula Math. 44, no. 5 (2024), 727-748, https://doi.org/10.7494/OpMath.2024.44.5.727

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.