Opuscula Math. 44, no. 5 (2024), 727-748
https://doi.org/10.7494/OpMath.2024.44.5.727
Opuscula Mathematica
Wintner-type nonoscillation theorems for conformable linear Sturm-Liouville differential equations
Abstract. In this study, we addressed the nonoscillation of th Sturm-Liouville differential equation with a differential operator, which corresponds to a proportional-derivative controller. The equation is a conformable linear differential equation. A Wintner-type nonoscillation theorem was established to be applied to such equations. Using this theorem, we provided a sharp nonoscillation condition that guarantees that all nontrivial solutions to Euler-type conformable linear equations do not oscillate. The main nonoscillation theorems can be proven by introducing a Riccati inequality, which corresponds to the conformable linear equation of the Sturm-Liouville type.
Keywords: nonoscillation, conformable differential equation, proportional-derivative controller, Riccati technique, Euler equation.
Mathematics Subject Classification: 34C10, 26A24.
- T. Abdeljawad, On conformable fractional calculus, J. Comp. Appl. Math. 279 (2015), 57-66. https://doi.org/10.1016/j.cam.2014.10.016
- M. Abu-Shady, M.K. Kaabar, A generalized definition of the fractional derivative with applications, Math. Probl. Eng. 2021 (2021), 9444803. https://doi.org/10.1155/2021/9444803
- R.P. Agarwal, S.R. Grace, D. O'Regan, Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002. https://doi.org/10.1007/978-94-017-2515-6
- K. Ahmed, C. Ahmed, H. Khalid, O. Mohamed, A new conformable fractional derivative and applications, Int. J. Differ. Equ. 2021 (2021), 6245435. http://doi.10.1155/2021/6245435
- P. Ahuja, A. Ujlayan, D. Sharma, H. Pratap, Deformable Laplace transform and its application, Nonlinear Eng. 12 (2023), 20220278. https://doi.org/10.1515/nleng-2022-0278
- N. Aliman, R. Ramli, S.M. Haris, M.S. Amiri, M. Van, A robust adaptive-fuzzy-proportional-derivative controller for a rehabilitation lower limb exoskeleton, Eng. Sci. Technol. Int. J. 35 (2022), 101097. https://doi.org/10.1016/j.jestch.2022.101097
- D.R. Anderson, Second-order self-adjoint differential equations using a proportional-derivative controller, Appl. Nonlinear Anal. 24 (2017), 17-48. https://doi.org/10.48550/arXiv.1607.07354
- D.R. Anderson, Even-order self-adjoint boundary value problems for proportional derivatives, Electron. J. Differential Equations 2017 (2017), 1-18.
- D.R. Anderson, S.G. Georgiev, Conformable Dynamic Equations on Time Scales, CRC Press, Boca Raton, FL, 2020. https://doi.org/10.1201/9781003057406
- D.R. Anderson, D.J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl. 10 (2015), 109-137.
- F.A. Çetinkaya, T. Cuchta, Sturm-Liouville and Riccati conformable dynamic equations, Adv. Dyn. Syst. Appl. 15 (2020), 1-13.
- F. Çetinkaya, A review of the evolution of the conformable derivatives, Funct. Differ. Equ. 29 (2022), 23-37. https://doi.org/10.26351/FDE/29/1-2/2
- H. Chhabra, V. Mohan, A. Rani, V. Singh, Robust nonlinear fractional order fuzzy PD plus fuzzy I controller applied to robotic manipulator, Neural Comput. Appl. 32 (2020), 2055-2079. https://doi.org/10.1007/s00521-019-04074-3
- O. Došlý, Methods of oscillation theory of half-linear second order differential equations, Czechoslovak Math. J. 50 (2000), 657-671. https://doi.org/10.1023/A:1022854131381
- O. Došlý, P. Řehák, Half-linear Differential Equations, North-Holland Mathematics Studies, vol. 202, Amsterdam, 2005.
- F. Gao, C. Chi, Improvement on conformable fractional derivative and its applications in fractional differential equations, J. Funct. Spaces 2020 (2020), 5852414. https://doi.org/10.1155/2020/5852414
- K. Ishibashi, Hille-Nehari type non-oscillation criteria for half-linear dynamic equations with mixed derivatives on a time scale, Electron. J. Differential Equations 2021 (2021), Article no. 78, pp. 15. https://doi.org/10.58997/ejde.2021.78
- K. Ishibashi, Nonoscillation of damped linear differential equations with a proportional derivative controller and its application to Whittaker-Hill-type and Mathieu-type equations, Opuscula Math. 43 (2023), 67-79. https://doi.org/10.7494/OpMath.2023.43.1.67
- R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
- A. Kneser, Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann. 44 (1893), 409-435.
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
- R.A. Moore, The behavior of solutions of a linear differential equation of second order, Pacific J. Math. 5 (1955), 125-145. https://doi.org/10.2140/PJM.1955.5.125
- M.D. Ortigueira, J.T. Machado, What is a fractional derivative?, J. Comput. Phys. 293 (2015), 4-13. https://doi.org/10.1016/j.jcp.2014.07.019
- C.A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Mathematics in Science and Engineering, vol. 48, Academic Press, New York - London, 1968.
- A. Wintner, On the non-existence of conjugate points, Amer. J. Math. 73 (1951), 368-380. https://doi.org/10.2307/2372182
- S.D. Wray, Integral comparison theorems in oscillation theory, J. Lond. Math. Soc. (2) 8 (1974), 595-606. https://doi.org/10.1112/jlms/s2-8.4.595
- F. Wu, J. Sugie, A new application method for nonoscillation criteria of Hille-Wintner type, Monatsh. Math. 183 (2017), 201-218. https://doi.org/10.1007/s00605-016-0972-3
- L.G. Zivlaei, A.B. Mingarelli, On the basic theory of some generalized and fractional derivatives, Fractal and Fractional 6 (2022), 672. https://doi.org/10.3390/fractalfract6110672
- Kazuki Ishibashi
- https://orcid.org/0000-0003-1812-9980
- Department of Electrical Systems Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Communicated by Josef Diblík.
- Received: 2024-05-13.
- Revised: 2024-05-31.
- Accepted: 2024-06-01.
- Published online: 2024-07-01.