Opuscula Math. 44, no. 5 (2024), 689-705
https://doi.org/10.7494/OpMath.2024.44.5.689
Opuscula Mathematica
Recovering the shape of an equilateral quantum tree with the Dirichlet conditions at the pendant vertices
Anastasia Dudko
Oleksandr Lesechko
Vyacheslav Pivovarchik
Abstract. We consider two spectral problems on an equilateral rooted tree with the standard (continuity and Kirchhoff's type) conditions at the interior vertices (except of the root if it is interior) and Dirichlet conditions at the pendant vertices (except of the root if it is pendant). For the first (Neumann) problem we impose the standard conditions (if the root is an interior vertex) or Neumann condition (if the root is a pendant vertex) at the root, while for the second (Dirichlet) problem we impose the Dirichlet condition at the root. We show that for caterpillar trees the spectra of the Neumann problem and of the Dirichlet problem uniquely determine the shape of the tree. Also, we present an example of co-spectral snowflake graphs.
Keywords: Sturm-Liouville equation, eigenvalue, spectrum, equilateral tree, caterpillar tree, snowflake graph, root, standard conditions, Dirichlet boundary condition, Neumann boundary condition.
Mathematics Subject Classification: 34B45, 34B24, 34L20.
- J. von Below, Can one hear the shape of a network?, [in:] Partial Differential Equations on Multistructures (Proc. Luminy 1999), Lect. Notes Pure Appl. Math., vol. 219, New York, 2001, 19-36. http://doi.org/10.1201/9780203902196.ch2
- J. von Below, A characteristic equation associated with an eigenvalue problem on \(c^2\)-networks, Linear Algebra Appl. 71 (1985), 309-325. https://doi.org/10.1016/0024-3795(85)90258-7
- J. Boman, P. Kurasov, R. Suhr, Schrödinger operators on graphs and geometry II. Spectral estimates for \(L_1\)-potentials and Ambartsumian's theorem, Integral Equations Operator Theory 90 (2018), Article no. 40. https://doi.org/10.1007/s00020-018-2467-1
- G. Borg, Uniqueness theorems in the spectral theory of \(y^{\prime \prime} +(\lambda -q(x))y=0\), Proc. 11th Scandinavian Congress of Mathematicians, Johan Grundt Tanums Forlag Oslo, (1952), 00020-01.
- O. Boyko, O. Martynyuk, V. Pivovarchik, On recovering the shape of a quantum tree from the spectrum of the Dirichlet boundary problem, Matematychni Studii 60 (2023), no. 2. https://doi.org/10.30970/ms.60.2.162-172
- D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Applications, Pure Appl. Math. Academic Press, New York, 1979.
- R. Carlson, V. Pivovarchik, Ambarzumian's theorem for trees, Electron. J. Differential Equations 2007 (2007), no. 142, 1-9.
- R. Carlson, V. Pivovarchik, Spectral asymptotics for quantum graphs with equal edge lengths, J. Phys. A: Math. Theor. 41 (2008) 145202, 16 pp. https://doi.org/10.1088/1751-8113/41/14/145202
- A. Chernyshenko, V. Pivovarchik, Recovering the shape of a quantum graph, Integral Equations Operator Theory 92 (2020), Article no. 23. https://doi.org/10.1007/s00020-020-02581-w
- B. Gutkin, U. Smilansky, Can one hear the shape of a graph?, J. Phys. A: Math. Gen. 34 (2001), 6061-6068. https://doi.org/10.1088/0305-4470/34/31/301
- D. Kaliuzhnyi-Verbovetskyi, V. Pivovarhik, Recovering the shape of quantum caterpillar graph by two spectra, Mechanics and Mathematical Models 5 (2023), no. 1, 14-24.
- M. Kiss, Spectral determinants and an Ambarzumian type theorem on graphs, Integral Equations Operator Theory 92 (2020), Article no. 24. https://doi.org/10.1007/s00020-020-02579-4
- P. Kurasov, S. Naboko, Rayleigh estimates for differential operators on graphs, J. Spectr. Theory 4 (2014), no. 2, 211-219. https://doi.org/10.4171/JST/67
- V.A. Marchenko, Sturm-Liouville Operators and Applications, Oper. Theory: Adv. Appl., vol. 22, Birkhäuser Springer, 1986.
- M. Möller, V. Pivovarchik, Direct and Inverse Finite-Dimensional Spectral Problems on Graphs, Oper. Theory: Adv. Appl., vol. 283, Birkhäuser Springer, 2020.
- D. Mugnolo, V. Pivovarchik, Distinguishing co-spectral quantum graphs by scattering, J. Phys. A: Math. Theor. 56 (2023), no. 9, 095201. https://doi.org/10.1088/1751-8121/acbb44
- M.-E. Pistol, Generating isospectral but not isomorphic quantum graphs, arXiv: 2104.12885. https://doi.org/10.48550/arXiv.2104.12885
- V. Pivovarchik, On Ambarzumian type theorems for tree domains, Opuscula Math. 42 (2022), no. 3, 427-437. https://doi.org/10.7494/OpMath.2022.42.3.427
- V. Pivovarchik, Recovering the shape of an equilateral quantum tree by two spectra, Integral Equations Operator Theory 96 (2024), Article no. 11. https://doi.org/10.1007/s00020-024-02759-6
- V. Pivovarchik, A. Chernyshenko, Cospectral quantum graphs with Dirichlet boundary conditions at pendant vertices, Ukrainian Math. J. 75 (2023), no. 3, 1-9.
- Anastasia Dudko
- South Ukrainian National Pedagogical University named after K.D. Ushinsky, Odesa, Ukraine
- Oleksandr Lesechko
- Odesa State Academy of Civil Engineering and Architecture, Odesa, Ukraine
- Vyacheslav Pivovarchik (corresponding author)
- https://orcid.org/0000-0002-4649-2333
- South Ukrainian National Pedagogical University named after K.D. Ushinsky, Odesa, Ukraine
- Communicated by Alexander Gomilko.
- Received: 2024-01-01.
- Revised: 2024-04-02.
- Accepted: 2024-04-06.
- Published online: 2024-07-01.