Opuscula Math. 44, no. 5 (2024), 631-649
https://doi.org/10.7494/OpMath.2024.44.5.631

 
Opuscula Mathematica

Analysis of a multiphase free boundary problem

Ahlem Abdelouahab
Sabri Bensid

Abstract. In this paper, we investigate a free boundary problem relevant in several applications, such as tumor growth models. Our problem is expressed as an elliptic equation involving discontinuous nonlinearities in a specified domain with a moving boundary. We establish the existence and uniqueness of solutions and provide a qualitative analysis of the free boundaries generated by the nonlinear term (inner boundaries). Furthermore, we analyze the dynamics of the outer region boundary. The final result demonstrates that under certain conditions, our problem is solvable in the neighborhood of a radial solution.

Keywords: discontinuous nonlinearity, free boundary, perturbation, tumor growth.

Mathematics Subject Classification: 34R35, 35J25, 92B05, 35R35.

Full text (pdf)

  1. A. Abdelouahab, S. Bensid, Perturbation analysis in a free boundary problem arising in tumor growth model, arXiv:2303.15828.
  2. R. Araujo, D.L.S. McElwain, A history of the study of solid tumour growth: The contribution of mathematical modelling, Bull. Math. Biol. 66 (2004), 1039-1091. https://doi.org/10.1016/j.bulm.2003.11.002
  3. S. Bensid, A free boundary problem for a discontinuous semilinear elliptic equations in convex ring, Complex Var. Elliptic Equ. (2024), 1-10. https://doi.org/10.1080/17476933.2024.2303440
  4. S. Bensid, J.I. Díaz, Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions, Discrete Contin. Dyn. Syst. Ser. S 22 (2017), 1757-1778. https://doi.org/10.3934/dcdsb.2017105
  5. S. Bensid, J.I. Díaz, On the exact number of monotone solutions of a simplified Budyko climate model and their different stability, Discrete Contin. Dyn. Syst. Ser. S 24 (2019), 1033-1047. https://doi.org/10.3934/dcdsb.2019005
  6. A. Borisorich, A. Friedman, Symmetry-breaking bifurcations for free boundary problem, Indiana Univ Math. J. 54 (2005), 927-947. https://doi.org/10.1512/iumj.2005.54.2473
  7. H.M. Byrne, Mathematical Biomedicine and Modeling Avascular Tumor Growth, Mathematics and Life Sciences, De Gruyter, 1 (2012), 277-303.
  8. H.M. Byrne, M.A.J. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci. 131 (1995), 151-181. https://doi.org/10.1016/0025-5564(94)00117-3
  9. H.M. Byrne, M.A.J. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci. 135 (1996), 187-216. https://doi.org/10.1016/0025-5564(96)00023-5
  10. M.G. Crandall, P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321-340. https://doi.org/10.1016/0022-1236(71)90015-2
  11. S. Cui, Analysis of a free boundary problem modeling tumor growth, Acta. Math. Sin. (Engl. Ser.) 21 (2005), 1071-1082. https://doi.org/10.1007/s10114-004-0483-3
  12. S. Cui, A. Friedman, Analysis of a mathematical model of the growth of necrotic tumors, J. Math. Anal. Appl. 255 (2001), 636-677. https://doi.org/10.1006/jmaa.2000.7306
  13. E. DiBenedetto, Partial Differential Equations, Springer Science, Business Media New York, 1995.
  14. M. Fontelos, A. Friedman, Symmetry-breaking bifurcations for free boundary problems in three dimensions, Asymptot. Anal. 35 (2003), 187-206.
  15. A. Friedman, B. Hu, Asymptotic stability for a free boundary problem arising in tumor models, J. Differ. Equ. 227 (2006), 598-639. https://doi.org/10.1016/j.jde.2005.09.008
  16. A. Friedman, B. Hu, Bifurcation for stability to instability for a free boundary problem arising in a tumor model, Arch. Rational Mech. Anal. 180 (2006), 293-330. https://doi.org/10.1007/s00205-005-0408-z
  17. A. Friedman, K. Lam, Analysis of a free boundary tumor model with angiogenesis, J. Differ. Equ. 259 (2015), 7636-7661. https://doi.org/10.1016/j.jde.2015.08.032
  18. A. Friedman, F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol. 38 (1999), 262-284. https://doi.org/10.1007/s002850050149
  19. D. Gilbarg, N. Trudinger, Elliptic Partial Diferential Equations of Second Order, Springer-Verlag, New York, 1983.
  20. H.P. Greenspan, Models for the growth of a solid tumor by diffusion, Stud. Appl. Math. 51 (1972), 317-340. https://doi.org/10.1002/sapm1972514317
  21. H.P. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theor. Biol. 56 (1976), 229-242. https://doi.org/10.1016/S0022-5193(76)80054-9
  22. Y. Huang, Z. Zhang, B. Hu, Bifurcation from stability to instability for a free boundary tumor model with angiogenisis, Discret Contin. Dyn. Sys. 39 (2019), 2473-2510. https://doi.org/10.3934/dcds.2019105
  23. D.L.S. McElwain, L.E. Morris, Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth, Math. Biosci. 39 (1978), 147-157. https://doi.org/10.1016/0025-5564%2878%2990033-0
  24. C. Müller, Spherical Harmonics, Lecture Notes in Math., vol. 17, Springer, Berlin, Heidelberg, New York, 1966.
  25. S. Xu, Stability of solutions to a free boundary problem for tumor growth, Int. J. Differ. Equ. 4 (2014), Article ID 427547. https://doi.org/10.1155/2014/427547
  26. J. Wu, Stationary solutions of a free boundary problem modeling the growth of vascular tumors with Gibbs-Thomson relation, J. Differ. Equ. 260 (2016), 5875-5893. https://doi.org/10.1016/j.jde.2015.12.023
  27. J. Wu, F. Zhou, Asymptotic behavoir of solutions os a free boundary problem modeling the growth of tumors with fluid-like tissue wider the action of inhibitors, Trans. Amer. Math. Soc. 365 (2013), 4181-4207. http://doi.org/10.1090/S0002-9947-2013-05779-0
  • Ahlem Abdelouahab
  • University of Tlemcen, Faculty of Sciences, Department of Mathematics, Dynamical Systems and Applications Laboratory, B.P. 119, Tlemcen 13000, Algeria
  • Sabri Bensid (corresponding author)
  • University of Tlemcen, Faculty of Sciences, Department of Mathematics, Dynamical Systems and Applications Laboratory, B.P. 119, Tlemcen 13000, Algeria
  • Communicated by J.I. Díaz.
  • Received: 2023-12-21.
  • Revised: 2024-04-20.
  • Accepted: 2024-05-10.
  • Published online: 2024-07-01.
Opuscula Mathematica - cover

Cite this article as:
Ahlem Abdelouahab, Sabri Bensid, Analysis of a multiphase free boundary problem, Opuscula Math. 44, no. 5 (2024), 631-649, https://doi.org/10.7494/OpMath.2024.44.5.631

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.