Opuscula Math. 44, no. 4 (2024), 445-470
https://doi.org/10.7494/OpMath.2024.44.4.445
Opuscula Mathematica
Study of fractional semipositone problems on RN
Abstract. Let \(s\in (0,1)\) and \(N\gt 2s\). In this paper, we consider the following class of nonlocal semipositone problems: \[(-\Delta)^s u= g(x)f_a(u)\text{ in }\mathbb{R}^N,\quad u \gt 0\text{ in }\mathbb{R}^N,\] where the weight \(g \in L^1(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)\) is positive, \(a\gt 0\) is a parameter, and \(f_a \in \mathcal{C}(\mathbb{R})\) is strictly negative on \((-\infty,0]\). For \(f_a\) having subcritical growth and weaker Ambrosetti-Rabinowitz type nonlinearity, we prove that the above problem admits a mountain pass solution \(u_a\), provided \(a\) is near zero. To obtain the positivity of \(u_a\), we establish a Brezis-Kato type uniform estimate of \((u_a)\) in \(L^r(\mathbb{R}^N)\) for every \(r \in [\frac{2N}{N-2s}, \infty]\).
Keywords: semipositone problems, fractional operator, uniform regularity estimates, positive solutions.
Mathematics Subject Classification: 35R11, 35J50, 35B65, 35B09.
- C.O. Alves, A.R.F. de Holanda, J.A. dos Santos, Existence of positive solutions for a class of semipositone problem in whole \(\mathbb{R}^N\), Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 5, 2349-2367. https://doi.org/10.1017/prm.2019.20
- A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
- G. Barbi, D. Capacci, A. Chierici, L. Chirco, V. Giovacchini, S. Manservisi, A numerical approach to the fractional Laplacian operator with applications to quasi-geostrophic flows, J. Phys.: Conf. Ser. 2177 (2022), 012013. https://doi.org/10.1088/1742-6596/2177/1/012013
- N. Biswas, U. Das, A. Sarkar, On the fourth order semipositone problem in \(\mathbb{R}^N\), Discrete Contin. Dyn. Syst. 43 (2023), no. 1, 411-434. https://doi.org/10.3934/dcds.2022154
- L. Brasco, E. Lindgren, E. Parini, The fractional Cheeger problem, Interfaces Free Bound. 16 (2014), no. 3, 419-458. https://doi.org/10.4171/IFB/325
- H. Brézis, T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1979), 137-151. https://doi.org/10.1007/BF01222016
- K.J. Brown, R. Shivaji, Simple proofs of some results in perturbed bifurcation theory, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982), no. 1-2, 71-82. https://doi.org/10.1017/S030821050003167X
- C. Bucur, E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, vol. 20, Springer, Cham, Bologna, 2016. https://doi.org/10.1007/978-3-319-28739-3
- A. Castro, D.G. de Figueredo, E. Lopera, Existence of positive solutions for a semipositone \(p\)-Laplacian problem, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), no. 3, 475-482. https://doi.org/10.1017/S0308210515000657
- A. Castro, M. Hassanpour, R. Shivaji, Uniqueness of non-negative solutions for a semipositone problem with concave nonlinearity, Comm. Partial Differential Equations 20 (1995), no. 11-12, 1927-1936. https://doi.org/10.1080/03605309508821157
- A. Castro, R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 3-4, 291-302. https://doi.org/10.1017/S0308210500014670
- A. Castro, R. Shivaji, Nonnegative solutions for a class of radially symmetric nonpositone problems, Proc. Amer. Math. Soc. 106 (1989), no. 3, 735-740. https://doi.org/10.2307/2047429
- G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A 112 (1978), 332-336.
- M. Chhetri, P. Drábek, R. Shivaji, Existence of positive solutions for a class of \(p\)-Laplacian superlinear semipositone problems, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), no. 5, 925-936. https://doi.org/10.1017/S0308210515000220
- P. Constantin, M. Ignatova, Remarks on the fractional Laplacian with Dirichlet boundary conditions and applications, Int. Math. Res. Not. IMRN 2017 (2017), no. 6, 1653-1673. https://doi.org/10.1093/imrn/rnw098
- D.G. Costa, H.R. Quoirin, H. Tehrani, A variational approach to superlinear semipositone elliptic problems, Proc. Amer. Math. Soc. 145 (2017), 2661-2675. https://doi.org/10.1090/proc/13426
- E.N. Dancer, Z. Zhang, Critical point, anti-maximum principle and semipositone \(p\)-Laplacian problems, Discrete Contin. Dyn. Syst. 2005 (2005), 209-215.
- R. Dhanya, S. Tiwari, A multiparameter fractional Laplace problem with semipositone nonlinearity, Commun. Pure Appl. Anal. 20 (2012), no. 12, 4043-4061. https://doi.org/10.3934/cpaa.2021143
- S. Dipierro, E. Valdinoci, A density property for fractional weighted Sobolev spaces, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (2015), no. 4, 397-422. https://doi.org/10.4171/RLM/712
- S. Dipierro, M. Medina, E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of \(\mathbb{R}^n\), vol. 15, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), Edizioni della Normale, Pisa, 2017. https://doi.org/10.1007/978-88-7642-601-8
- P. Gatto, J.S. Hesthaven, Numerical approximation of the fractional Laplacian via \(hp\)-finite elements, with an application to image denoising, J. Sci. Comput. 65 (2015), 249-270. https://doi.org/10.1007/s10915-014-9959-1
- A. Iannizzotto, S. Mosconi, M. Squassina, \(H^s\) versus \(C^0\)-weighted minimizers, NoDEA Nonlinear Differential Equations Appl. 22 (2015), 477-497. https://doi.org/10.1007/s00030-014-0292-z
- E. Lopera, C. López, R. Vidal, Existence of positive solutions for a parameter fractional \(p\)-Laplacian problem with semipositone nonlinearity, arXiv:2211.02790, (2022). https://doi.org/10.48550/arXiv.2211.02790
- S. Nowak, Higher Hölder regularity for nonlocal equations with irregular kernel, Calc. Var. Partial Differential Equations 60 (2021), Article no. 24. https://doi.org/10.1007/s00526-020-01915-1
- S. Oruganti, J. Shi, R. Shivaji, Diffusive logistic equation with constant yield harvesting. I: Steady states, Trans. Amer. Math. Soc. 354 (2002), 3601-3619. https://doi.org/10.1090/S0002-9947-02-03005-2
- E.E. Salpeter, H.A. Bethe, A relativistic equation for bound-state problems, Phys. Rev. 84 (1951), 1232-1242.
- M. Schechter, A variation of the mountain pass lemma and applications, J. London Math. Soc. (2) 44 (1991), no. 3, 491-502. https://doi.org/10.1112/jlms/s2-44.3.491
- J. Shi, J. Jiang, Bistability dynamics in some structured ecological models, [in:] Spatial Ecology, Chapman & Hall/CRC Mathematical and Computational Biology Series, CRC Press, Boca Raton, FL, 2009.
- P.R. Stinga, User's guide to the fractional Laplacian and the method of semigroups, [in:] Handbook of Fractional Calculus with Applications. Vol. 2, De Gruyter, Berlin, 2019, 235-265.
- Nirjan Biswas
- Tata Institute of Fundamental Research, Centre For Applicable Mathematics, Post Bag No. 6503, Sharada Nagar, Bangalore 560065, India
- Communicated by J.I. Díaz.
- Received: 2024-01-01.
- Revised: 2024-02-27.
- Accepted: 2024-03-01.
- Published online: 2024-04-29.