Opuscula Math. 44, no. 3 (2024), 391-407
https://doi.org/10.7494/OpMath.2024.44.3.391
Opuscula Mathematica
On the Möbius invariant principal functions of Pincus
Abstract. In this semi-expository short note, we prove that the only homogeneous pure hyponormal operator \(T\) with \(\operatorname{rank} (T^*T-TT^*) =1\), modulo unitary equivalence, is the unilateral shift.
Keywords: hyponormal operator, multiplicity, trace formula, homogeneous operators, principal function.
Mathematics Subject Classification: 47B20.
- B. Bagchi, G. Misra, Constant characteristic functions and homogeneous operators, J. Operator Theory 37 (1997), 51-65.
- B. Bagchi, G. Misra, Homogeneous operators and projective representations of the Möbius group: a survey, Proc. Indian Acad. Sci. Math. Sci. 111 (2001), 415-437. https://doi.org/10.1007/BF02829616
- B. Bagchi, G. Misra, The homogeneous shifts, J. Funct. Anal. 204 (2003), 293-319. https://doi.org/10.1016/S0022-1236(02)00088-5
- B. Bagchi, S. Hazra, G. Misra, A product formula for homogeneous characteristic functions, Integral Equations Operator Theory 95 (2023), Article no. 8. https://doi.org/10.1007/s00020-023-02730-x
- C. Berger, B.I. Shaw, Selfcommutators of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc. 79 (1973), 1193-119. https://doi.org/10.1090/S0002-9904-1973-13375-0
- R.W. Carey, J.D. Pincus, An invariant for certain operator algebras, Proc. Natl. Acad. Sci. USA 71 (1974), 1952-1956. https://doi.org/10.1073/pnas.71.5.1952
- R.W. Carey, J.D. Pincus, Construction of seminormal operators with prescribed mosaic, Indiana Univ. Math. J. 23 (1974), 1155-1165. https://doi.org/10.1512/iumj.1974.23.23092
- A. Chattopadhyay, K.B. Sinha, On the Carey-Helton-Howe-Pincus trace formula, J. Funct. Anal. 274 (2018), 2265-2290. https://doi.org/10.1016/j.jfa.2017.08.006
- K.F. Clancey, Seminormal Operators, Lecture Notes in Mathematics, vol. 742, Springer, Berlin, 1979.
- K.F. Clancey, B.L. Wadhwa, Local spectra of seminormal operators, Trans. Amer. Math. Soc. 280 (1983), 415-428. https://doi.org/10.2307/1999622
- D.N. Clark, G. Misra, On homogeneous contractions and unitary representations of \(SU(1,1)\), J. Operator Theory 30 (1993), 109-122.
- I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonself-adjoint Operators, Translations of Mathematical Monographs, vol. 18, Providence, RI: AMS, 1969.
- B. Gustafsson, M. Putinar, Hyponormal Quantization of Planar Domains: Exponential Transform in Dimension Two, Lecture Notes in Mathematics, vol. 2199, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-65810-0
- J. Helton, R. Howe, Integral operators: traces, index, and homology, Proc. Conf. Operator Theory, Dalhousie Univ., Halifax 1973, Lect. Notes Math., vol. 345, Springer, Berlin, 1973, 141-209.
- A. Korányi, G. Misra, A classification of homogeneous operators in the Cowen-Douglas class, Adv. Math. 226 (2011), 5338-5360. https://doi.org/10.1016/j.aim.2011.01.012
- M. Martin, M. Putinar, Lectures on Hyponormal Operators, Operator Theory: Advances and Applications, vol. 39, Birkhäuser Verlag, Basel, 1989.
- G. Misra, Curvature and the backward shift operator, Proc. Amer. Math. Soc. 91 (1984), 105-107. https://doi.org/10.2307/2045279
- J.D. Pincus, Commutators and systems of singular integral equations, I, Acta Math. 121 (1968), 219-249. https://doi.org/10.1007/BF02391914
- J.D. Pincus, The spectrum of seminormal operators, Proc. Natl. Acad. Sci. USA 68 (1971), 1684-1685. https://doi.org/10.1073/pnas.68.8.1684
- J.D. Pincus, The determining function method in the treatment of commutator systems, Hilbert Space Operators Operator Algebras, Colloquia Math. Soc. Janos Bolyai 5 (1972), 443-477.
- M. Putinar, Extensions scalaires et noyaux distribution des opérateurs hyponormaux, C.R. Acad. Sci. Paris, Sér. I Math. 301 (1985), 739-741.
- M. Putinar, Extreme hyponormal operators, Special Classes of Linear Operators and Other Topics, Operator Theory: Advances and Applications, 28, Birkhäuser, Basel, 1988, 249-265.
- C.R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323-330. https://doi.org/10.1007/BF01111839
- J. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469-476. https://doi.org/10.1090/S0002-9947-1965-0173161-3
- Sagar Ghosh
- Indian Statistical Institute, Theoretical Statistics and Mathematics Unit, Banaglore 560 059, India
- Gadadhar Misra (corresponding author)
- https://orcid.org/0000-0001-8096-2039
- Indian Statistical Institute, Theoretical Statistics and Mathematics Unit, Banaglore 560 059, India
- Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382 055, India
- Communicated by Alexander Gomilko.
- Received: 2023-04-17.
- Revised: 2023-08-22.
- Accepted: 2023-08-23.
- Published online: 2024-02-15.