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1. INTRODUCTION

In this paper, a Hilbert space H is assumed to be complex and separable and an operator
T on H is assumed to be linear and bounded. The algebra of bounded linear operators
on a H is denoted by L(H). An operator A ∈ L(H) is said to be hyponormal if
[A∗, A] := A∗A − AA∗ is non-negative, that is, ⟨[A∗, A]f, f⟩ ⩾ 0 for all f ∈ H.

Let H be a Hilbert space and {en}n⩾0 be an orthonormal basis in H. For any
bounded non-negative operator B acting on H, define its trace by setting

tr(B) =
∑

n

⟨Ben, en⟩.

This definition of tr(B) does not depend on the choice of the orthonormal basis that
was chosen to define it.

An operator A ∈ L(H) is said to be in the trace class S1(H) if
∑∞

n=0⟨|A|en, en⟩
is finite. As usual, here |A| is the unique positive square root of the self-adjoint
operator A∗A.

The s-numbers {sj(T )}∞
j=1 of a compact operator T are the eigenvalues of (T ∗T )

1
2 ,

counted with multiplicity and arranged in decreasing order. The trace norm is also
given by the formula

∥T∥1 =
∞∑

j=1
sj(T ).
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Let T be a trace class operator. Set

ΛT := {λj(T ) : j = 1, 2, . . . , ν(T )}

be an enumeration of the non-zero eigenvalues of T counting multiplicities. The
determinant of the operator I + T is defined as follows:

det(I + T ) =





ν(T )∏

j=1
(1 + λj(T )), ΛT ̸= ∅,

1 ΛT = ∅.

In case ν(T ) is infinite, the convergence of the product defining the determinant follows
from the inequality

∑∞
j=1 |λj(T )| ≤ ∥T∥1, see [12, Chapter II]. We need the following

crucial relationship between the trace and the determinant.
Recall the Jacobi formula for matrix exponential, namely, det exp(B) = exp(tr(B)).

Now, suppose that T is a trace class operator with ∥T∥1 < 1. Then we define
det(I + T ) = exp tr(log(I + T )). Here log(I + T ) is the logarithm of I + T given by
the series (convergent in the norm ∥ · ∥1)

log(I + T ) = −
∞∑

n=1
(−1)n T n

n
, (1.1)

see [9, p. 81].

Definition 1.1. A natural number m is said to be the (rational) multiplicity of an
operator T ∈ L(H) if there exist vectors {xi}i∈I , for some indexing set I with |I| = m,
such that

H =
∨ {

f(T )xi, i ∈ I, f ∈ Rat(σ(T ))
}

,

where Rat(σ(T )) is the set of all rational functions r of the form p
q for a pair of

polynomials p and q with q not zero on σ(T ).

In this short note we study the class of hyponormal operators T with finite
multiplicity. The remarkable inequality [5] of Berger and Shaw

tr [T∗, T] ⩽ m

π
Area(σ(T)) (1.2)

ensures that the self-commutator [T ∗, T ] of such an operator is in the trace class.
An immediate corollary is an inequality due to Putnam [23]: If T ∈ L(H) is hyponormal,
then

∥[T ∗, T ]∥ ≤ 1
π

Area(σ(T )). (1.3)

The verification below of Putnam’s inequality is taken from [16, Chapter VI, Theo-
rem 2.1]. Pick a non-zero vector x ∈ H and set

Hx :=
∨ {

f(T )x : f ∈ Rat(σ(T ))
}

.
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Let Tx : Hx → Hx be the restriction of the operator T to Hx. The operator Tx is
evidently hyponormal and it is rationally cyclic of multiplicity 1. We have

⟨[T ∗, T ]x, x]⟩ = ∥Tx∥2 − ∥T ∗x∥2

⩽ ∥Txx∥2 − ∥T ∗
x x∥2

= ⟨[T ∗
x , Tx]x, x⟩

⩽ tr([T ∗
x , Tx])

⩽ 1
π

Area(σ(Tx))

⩽ 1
π

Area(σ(T )),

where the penultimate inequality follows from Berger-Shaw inequality (1.2) and the
last inequality is a consequence of the spectral inclusion σ(Tx) ⊆ σ(T ).

Remark 1.2. Among many consequences of Putnam’s inequality, we single out one
that we will need in what follows, namely, if T is a pure hyponormal operator, then
Area(σ(T )) > 0.

Moreover, we note that the determinantal formula due to Carey and Pincus,
discussed below, connects the principal function gT of the operator T with the trace
of [T ∗, T ] using the Helton–Howe trace formula. For a recent account, one may consult
the book [13].

Definition 1.3. The bi-holomorphic automorphism group Möb of the unit disc consists
of rational functions φ of the form:

φ(z) = β
z − a

1 − āz
, β ∈ T, a ∈ D,

where T and D denote the unit circle and the open unit disc, respectively.

For an opeartor T with the spectrum σ(T ) contained in the closed unit disc D,
by the spectral mapping theorem, 0 ̸∈ σ(I − āT ) for any a ∈ D. Hence, the operator
I − āT , a ∈ D, is invertible.

Definition 1.4. An operator T with σ(T ) ⊆ D is said to be homogeneous if
the operator

φ(T ) := β(T − a)(I − āT )−1, β ∈ T, a ∈ D,

is unitarily equivalent to T for all φ ∈ Möb.

The problem of determining all the homogeneous normal operators, homogeneous
contractions and homogeneous operators in the Cowen-Douglas class has been addressed
in a series of papers [2, 4, 15] previously. One of the goals of this paper is to determine
modulo unitary equivalence, all hyponormal operators T such that [T ∗, T ] is in trace
class that are homogeneous. This involves, among other things, finding a transformation
rule for the principal function of an operator under the Möbius transformations.
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2. PRELIMINARIES

An operator T ∈ L(H) is said to be hyponormal if the self-commutator [T ∗, T ] =
T ∗T − TT ∗ is non-negative definite. A hyponormal operator T is said to be a pure if
there is no nontrivial reducing subspace for T on which it is normal. Every hyponormal
operator T , modulo unitary equivalence, is of the form Tp ⊕ Tn, where Tp = T |Hp ,
Tn = T |Hn

and H = Hp ⊕Hn such that Tp is pure and Tn is normal, see [16, Chapter II,
Theorem 1.3].

Any operator T ∈ L(H) can be written in the form T = A + iB, where A = T +T ∗

2
and B := T −T ∗

2i are self-adjoint. It follows that [T ∗, T ] = 2i[A, B].

2.1. PRINCIPAL FUNCTION

The principal function of an operator T is defined by means of an auxiliary operator
valued function E of two complex variables, called the determining function of T . The
principal function gT of T then appears by expressing the multiplicative determinant
of the self-commutator, or the trace of the self-commutator D := [T ∗, T ] as an integral.
We recall that the determining function E is given by the formula

E(z, w) = I − 2iD
1
2 (A − z)−1(B − w)−1D

1
2 , z, w ∈ C \ σ(A) × σ(B).

Pincus in [18,20] proved the existence of a function g(v, u) ⩾ 0 such that

det E(z, w) = exp


 1

2πi

∫∫

C

g(u, v) du

u − z

dv

v − w


 , z, w ∈ C \ σ(A) × σ(B). (2.1)

The support of any almost everywhere determined version of g(u, v) is said to be
the “determining set” of the pair A, B, or equivalently that of the operator T . The
essential closure of the determining set is denoted by D(A, B). It is proved in [19] that
σ(T ) = D(A, B). Thus, Supp(g) ⊆ σ(T ) and if T is pure, then Supp(g) = σ(T ), see
also [9, p. 105].
Remark 2.1. For every integrable, compactly supported function g on C, with
0 ⩽ g ⩽ 1, there exists a pure semi-normal operator T , with rank [T ∗, T] = 1 such
that [g] = [gT ] in L1( dµ). The proof is in [7, Theorem 1], see also [21].

2.2. THE TRACIAL BI-LINEAR FORM

Let C[x, y] denote the algebra polynomials over the complex field in the two indeter-
minates x, y. Thus, any p ∈ C[x, y] is of the form

p(x, y) =
m∑

j,k=1
ai,jxjyk, ai,j ∈ C.

Let A, B be a pair of self adjoint operators in L(H) such that ∥[A, B]∥1 < ∞. Also, let
C[A, B] be the algebra of operators generated by substituting A, B in place of the
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commuting variables x, y of the polynomial p ∈ C[x, y]. Thus, if X, Y is any pair of
operators in C[A, B], then the operator

p(X, Y ) =
m∑

j,k=1
ai,jXjY k

is well defined modulo operators of trace class. The tracial bi-linear form associated
with the pair X, Y is

(p, q) = tr i [p(X, Y ), q(X, Y )], p, q ∈ C[x, y].

An amazing formula discovered by Helton and Howe [14] for the tracial bilinear form
is given below.

Theorem 2.2 (Helton–Howe). Suppose that X, Y are a pair of operators such that
[X, Y ] is in trace class. Then there exists a regular signed Borel measure µ with compact
support in C such that for p, q ∈ C[x, y],

(p, q) = tr i [p(X, Y ), q(X, Y )] =
∫∫

C
J(p, q)dµ,

where

J(p, q) = ∂p

∂x

∂q

∂y
− ∂p

∂y

∂q

∂x
.

Soon after the discovery of the Helton–Howe formula, Pincus established that
the measure µ in the Helton–Howe formula is mutually absolutely continuous with
respect to the area measure dxdy, that is, dµ = gT (x, y)dxdy, where gT is the principal
function of the operator T = X + iY .

2.3. UNITARY INVARIANTS

For z, w in a neighbourhood of infinity, the operator valued determining function
E(z, w) of an irreducible pure hyponormal operator T of trace class is a complete
unitary invariant of T . The principal function gT , on the other hand, is a unitary
invariant in general but it is a complete invariant when the rank of [T ∗, T ] is 1, see [18].
Indeed, we describe a large class of operators showing that the principal function
need not be a complete invariant if we drop the requirement: rank of [T ∗, T ] is 1.
A different unitary invariant is in [10]. In what follows, we assume that the operator
T is a irreducible hyponormal (hence, pure), and that rank of [T ∗, T ] = 1. Thus,
we assume without loss of generality that [T ∗, T ] = x ⊗ x for some x ∈ H, where
x ⊗ x denotes the non-negative definite rank one operator h 7→ ⟨h, x⟩x, h ∈ H. In this
case the multiplicative commutator and therefore, the determining function E of the
operator T can be calculated explicitly as follows.
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For any pair of complex numbers z, w not in the spectrum of T , the operators
(T ∗ − w̄)−1 and (T − z)−1 exist and the multiplicative commutator

(T − z)(T ∗ − w̄)(T − z)−1(T ∗ − w̄)−1,

is in the determinant class, that is, it is of the form I + K, where K is in trace class:

(T − z)(T ∗ − w̄)(T − z)−1(T ∗ − w̄)−1

= ((T ∗T − x ⊗ x − zT ∗ − w̄T + zw̄)(T − z)−1(T ∗ − w̄)−1)
= ((T ∗ − w̄)(T − z)(T − z)−1(T ∗ − w̄)−1 − (x ⊗ x)(T − z)−1(T ∗ − w̄)−1)
= I − (x ⊗ x)(T − z)−1(T ∗ − w̄)−1

= I + K,

where
K = −(x ⊗ x)(T − z)−1(T ∗ − w̄)−1

is in trace class, and moreover,

tr K = −⟨(T ∗ − w̄)−1x, (T ∗ − z̄)−1x⟩.

Therefore,

det(I − K) = exp
(

tr log(I − K)
)

= exp
(

tr
∞∑

j=1

(−1)j−1

j
(−K)j

)

= exp
( ∞∑

j=1

(−1)2j+1

j
tr(Kj)

)

= exp
( ∞∑

j=1

(−1)2j+1

j
(tr(K))j

)

= exp
(

log(1 − tr(K))
)

= 1 − tr(K)
= 1 − ⟨(T ∗ − w̄)−1x, (T ∗ − z̄)−1x⟩.

Consequently, combining with the formula (2.1), we have the equality

1 − ⟨(T ∗ − w̄)−1x, (T ∗ − z̄)−1x⟩ = exp


− 1

π

∫

C

gT (ζ)
(ζ − z)(ζ̄ − w̄)

dA(ζ)


 . (2.2)

For a different approach to establishing this formula, see [8, Theorem 4.3].
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2.4. AN EXAMPLE

Let S be the unilateral shift operator acting on the Hilbert space ℓ2 of square summable
complex sequences by the rule: Sek = ek+1, where {e0, e1, e2, . . .} is the standard basis
of ℓ2. The self-commutator [S∗, S] = e0 ⊗ e0. Since (S∗ − w̄I)−1e0 = − 1

w̄ e0, we have
that

1 − ⟨(S∗ − w̄I)−1e0, (S∗ − z̄I)−1e0⟩ = 1 −
〈

− 1
w̄

e0, −1
z̄

e0

〉
= 1 − 1

zw̄
.

We claim that

exp


− 1

π

∫

D

1
(ζ − z)(ζ − w)

dA(ζ)


 = 1 − 1

zw̄
.

Taking |ζ| ≤ 1, and |z|, |w| > 1, and expanding 1
ζ−z as well as 1

ζ̄−w̄
in a power series

of ζ
z and ζ̄

w̄ , respectively, the claim is verified by integrating the product term by term.
Thus the principal function of the unilateral shift S is the characteristic function 1D
of the closed unit disc D.

Remark 2.3. Let σess (T ) be the essential spectrum of an operator T . For
λ ∈ C\σess (T ), the principal function g(λ) = − ind(T − λ), see [9, 50, p. 105].
Consequently, the principal function gS of the unilateral shift S is 1D.

3. THE ACTION OF THE MÖBIUS GROUP

The hyponormal operators share an important property with normal operators, namely,
the spectral radius ρ(T ) of a hyponormal operator equals its norm ∥T∥. However,
unlike normal operators, if T is a pure hyponormal operators, then by Putnam’s
inequality, the area measure of spectrum σ(T ) must be positive.

3.1. INVARIANCE

It is not hard to verify that if T is hyponormal, then φ(T ) is also hyponormal for any
φ in Möb, the biholomorphic automorphism group of the unit disc D. We reproduce
the proof below from [24, Lemma 1].

Proposition 3.1 (Stampfli). If T is hyponormal, then φ(T ), φ in Möb, is also
hyponormal.

Proof. Any Möbius transformation is a composition of an affine transformation and
an inversion of some other affine transformation. We have

[(aT + b)∗, aT + b)] = |a|2[T ∗, T ] ≥ 0.
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Therefore, to complete the proof, it is enough to verify that [(T ∗)−1, T −1] is hyponormal
for an invertible operator T . By hypothesis, we have that

0 ⩽ T −1(T ∗T − TT ∗)(T ∗)−1 = T −1T ∗T (T ∗)−1 − I.

If A is invertible and A ⩾ I, then A−1 ⩽ I. Therefore,

I − T ∗T −1(T ∗)−1T ⩾ 0.

Hence,

[(T ∗)−1, T −1] = ((T ∗)−1T −1 − T −1(T ∗)−1)
= (T ∗)−1(I − T ∗T −1(T ∗)−1T )T −1 ⩾ 0

completing the proof of the proposition.

We now re-write the formula for the tracial bi-linear form in complex co-ordinates
and in slightly greater generality, see [16, Chapter X, Theorem 2.4, and Equation (12),
p. 242].

Theorem 3.2 (Carey–Helton–Howe–Pincus). Suppose that T ∈ L(H) is a hyponormal
operator with [T ∗, T ] is in the trace class S1(H). Then for any pair of functions p, q
in the Frechet Space C∞(σ(T )) of all smooth functions on σ(T ), we have the equality

tr[p(T, T ∗), q(T, T ∗)] = 1
π

∫

σ(T )

J(p, q)gT dµ,

where

J(p, q) := ∂p

∂z

∂q

∂z
− ∂p

∂z

∂q

∂z
.

The exact relationship of this formula to that of the Helton–Howe formula given
earlier is obtained by choosing X = Re T , Y = Im T ; and converting the complex
derivatives in J(p, q) to real ones by using transformation from complex to real
coordinates:

∂f

∂z
= 1

2

(∂f

∂x
− i

∂f

∂y

)
,

∂f

∂z
= 1

2

(∂f

∂x
+ i

∂f

∂y

)

and vice-versa.
The proof of the lemma below follows directly from the Carey–Helton–Howe–Pincus

formula.

Lemma 3.3. Suppose that T ∈ L(H) is a hyponormal operator and [T ∗, T ] is in the
trace class S1(H) and that σ(T ) ⊆ D. Then [(T ∗ − λ)−1, (T − λ)−1] is also in S1(H)
for λ /∈ σ(T ). In particular, [φ(T )∗, φ(T )] is in S1(H) for any φ ∈ Möb.
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Proof. Pick p(ζ, ζ) = 1
ζ−λ

and q(ζ, ζ) = 1
ζ−λ . Then J(p, q) = 1

|ζ−λ|4 < k for some
k > 0 since λ /∈ D. Therefore,

tr[(T ∗ − λ)−1, (T − λ)−1] = tr[p(T, T ∗), q(T, T ∗)]

= 1
π

∫

σ(T )

1
|ζ − λ|4 gT dµ

⩽ k

π
∥gT ∥L1(σ(T )) < ∞.

Since affine transform of a trace class operator is again in trace class, the proof
is complete.

We now compute the self commutator of the operator φ(T ). For this, we note that
φ(z) = z−a

1−āz = −(ā)−1 + c(z − ā−1)−1, where c = a−ā−1

ā . Then

[φ(T )∗, φ(T )] = [−a−1I + c̄(T ∗ − a−1)−1, −ā−1I + c(T − ā−1)−1]
= (−a−1I + c(T ∗ − a−1)−1)(−a−1I + c(T − a−1)−1)

− (−a−1I + c(T − a−1)−1)(−a−1I + c(T ∗ − a−1)−1)
= |c|2((T ∗ − a−1)−1(T − a−1)−1 − (T − a−1)−1(T ∗ − a−1)−1)

= |c|2
(
(T − a−1)(T ∗ − a−1)

)−1[(T ∗ − a−1), (T − a−1)]
(
(T ∗ − a−1)(T − a−1)

)−1

= |c|2
(
(T − a−1)(T ∗ − a−1)

)−1[T ∗, T ]
(
(T ∗ − a−1)(T − a−1)

)−1
.

The computation of [φ(T )∗, φ(T )] facilitates the proof of the lemma below.

Lemma 3.4. Suppose that T ∈ L(H) is a hyponormal operator and the rank of [T ∗, T ]
is 1 and that σ(T ) ⊆ D. Then the rank of the self-commutator [φ(T )∗, φ(T )] is also 1.

Proof. For the proof, in view of the preceding discussion, it is enough to verify that
whenever T is an invertible operator with rank[T ∗, T ] = 1, the rank of [T ∗−1, T −1] is
also 1. By hypothesis, [T ∗, T ] = x ⊗ x for some vector x in H. Hence,

T −1T ∗T (T ∗)−1 = I + T −1(T ∗T − TT ∗)(T ∗)−1

= I + T −1(x ⊗ x)(T ∗)−1.

Taking inverses on both sides, we have

T −1(T ∗)−1 = (T ∗)−1[I + T −1(x ⊗ x)(T ∗)−1]−1T −1

= (T{I + T −1(x ⊗ x)(T ∗)−1}T ∗)−1

= (TT ∗ + x ⊗ x)−1.

Similarly,
(T ∗)−1T −1 = (T ∗T − x ⊗ x)−1.
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Therefore,
[(T ∗)−1, T −1] = (T ∗)−1T −1 − T −1(T ∗)−1

= (T ∗T − x ⊗ x)−1 − (TT ∗ + x ⊗ x)−1

= (T ∗T − x ⊗ x)−1({TT ∗ + x ⊗ x} − {T ∗T − x ⊗ x})
(TT ∗ + x ⊗ x)−1

= (T ∗T − x ⊗ x)−1[x ⊗ x](TT ∗ + x ⊗ x)−1

= (TT ∗)−1(x ⊗ x)(T ∗T )−1.

It follows that the self-commutator of T −1 is also of rank one completing the proof.

Remark 3.5. Combining Proposition 3.1 and Lemma 3.4, we conclude that the
set of pure hypnormal operators with rank 1 self-commutator is left invariant under
the action of the Möbius group. Similarly, combining Proposition 3.1, this time with
Lemma 3.3, we see that the set of pure hypnormal operators T with ∥[T ∗, T ]∥1 finite
is also left invariant under the action of Möb.

3.2. A CHANGE OF VARIABLE FORMULA FOR THE PRINCIPAL FUNCTION

A change of variable formula for the principal function appears in [9, pp. 106–107] and
also in [16, p. 245]. However, for our purposes, we need a change of variable formula
for the principal function in the form given below.
Proposition 3.6. Let T be a pure hyponormal operator with trace class
self-commutator and set W := φ(T ), φ in Möb. Assume that the spectrum of T
is contained in the closed unit disc. Then the relationship between the two principal
functions gT and gW is given by the change of variable formula

gW (ζ) = gT (φ−1(ζ)), ζ ∈ σ(W ).
Proof. We have proved that W is a hyponormal operator with ∥[W ∗, W ]∥1 < ∞.
We note that φ(T )∗ = φ∗(T ∗), where φ∗(z) = φ(z̄). Setting

p̃(z, z̄) := p(φ(z), φ(z)) and q̃(z, z̄) := q(φ(z), φ(z)),
we have that

tr[p(φ(T ), φ(T )∗), q(φ(T ), φ(T )∗)] = 1
π

∫

σ(φ(T ))

J(p, q)gφ(T )(ζ)dA(ζ).

On the other hand,
tr[p(φ(T ), φ(T )∗), q(φ(T ), φ(T )∗)] = tr[p̃(T, T ∗), q̃(T, T ∗)]

= 1
π

∫

σ(T )

Jζ(p̃, q̃)gT (ζ)dA(ζ)

= 1
π

∫

σ(φ(T ))

Jη(p, q)gT (φ−1(η))dA(η),
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where η = φ(ζ). By the chain rule, we have ∂p̃
∂ζ̄

= ∂p̃
∂η̄

∂φ̄
∂ζ̄

, and similarly ∂p̃
∂ζ = ∂p̃

∂η
∂φ
∂ζ .

Thus, we have the equality

Jζ(p̃, q̃) = Jη(p, q)
(∂(φ(ζ))

∂ζ̄

∂(φ(ζ))
∂ζ

)
.

Consequently,

dA(η) = − 1
2i

dη ∧ dη

= − 1
2i

(∂(φ(ζ))
∂ζ

∂(φ(ζ))
∂ζ

)
dζ ∧ dζ

=
(∂(φ(ζ))

∂ζ

∂(φ(ζ))
∂ζ

)
dA(ζ).

Hence,

Jζ(p̃, q̃)dA(ζ) = Jη(p, q)dA(η).

Since p and q are arbitrary C∞ functions on σ(T ), we conclude that

gφ(T )(ζ) = gT (φ−1(ζ))

completing the proof.

4. HOMOGENEOUS HYPONORMAL OPERATORS T WITH rank[T ∗, T ] = 1

We have already remarked that the principal function of a pure hyponornmal operator
in the trace class S1(H) is not a complete unitary invariant for the operator T in
general. However, it is not hard to see that it is a unitary invariant.
Proposition 4.1. Let T be a pure hyponormal operator in S1(H). If W is an operator
unitarily equivalent to T , then the principal functions of W and T coincide.
Proof. Let W = UTU∗ for some unitary operator U . The operator W is hyponormal
and is in S1(H). For any polynomial p ∈ C[z, z̄], we have p(W, W ∗) = Up(T, T ∗)U∗.
Hence, by the Helton–Howe formula, we find that

1
π

∫

σ(W )

J(p, q)gW (ζ)dA(ζ) = tr[p(W, W ∗), q(W, W ∗)]

= tr[Up(T, T ∗)U∗, Uq(T, T ∗)U∗]
= tr(U [p(T, T ∗), q(T, T ∗)]U∗)
= tr[p(T, T ∗), q(T, T ∗)]

= 1
π

∫

σ(T )

J(p, q)gT (ζ)dA(ζ)
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Since σ(T ) = σ(W ), we have that

1
π

∫

σ(T )

J(p, q)(gT − gW )(ζ)dA(ζ) = 0

for p, q in C[x, y], and in consequence gW = gT .

Imposing the condition of homogeneity on a pure hyponormal opeartor T in S1(H),
we investigate what happens to the principal function gT .

We begin with the simple observation that if T is a homogeneous operator, then
by the spectral mapping theorem, the spectrum σ(T ) must be invariant under the
action of the Möbius group. Consequently, σ(T ) has to be either the closed unit disc
D, or the unit circle T. However, if T is also a pure hyponormal operator, then as we
have noted earlier, σ(T ) cannot be T.
Proposition 4.2. Suppose that T is a pure hyponormal homogeneous operator such
that [T ∗, T ] is in S1(H). Then the principal function gT is constant on the spec-
trum σ(T ).
Proof. Since φ(T ) is unitarily equivalent to T , φ ∈ Möb, it follows that gT (z) =
gϕ(T )(z). By the change of variable formula for the principal function, we have
gϕ(T )(z) = gT (ϕ−1(z)). Combining these two equalities, we conclude that

gT (z) = gφ(T )(z) = gT (φ−1(z)), (4.1)

for all φ ∈ Möb. For a fixed but arbitrary z ∈ D, pick a Möbius transformation φz

with the property: φz(0) = z. Using this φz in Equation (4.1), we have

gT (z) = gϕz(T )(z) = gT (ϕz
−1(z)) = gT (0).

We therefore conclude that gT must be a constant on σ(T ), 0 < gT (0) ≤ 1.

We have now all the tools to prove the only new result of this short note. Let
us recapitulate what we have proved so far. Assume that T is a pure homogeneous
hyponormal operator with rank of [T ∗, T ] = 1. Then for such an operator T we must
have that:
(i) the spectrum σ(T ) = D,
(ii) the principal function gT must be a constant, moreover, this constant value is

in (0, 1],
(iii) if T = S is the unilateral shift, then gS = 1D, see Example 2.4.
Finally, note that:
(a) the unilateral shift S is a homogeneous, see [3, List 4.1(2)], pure hyponormal

operator and rank([S∗, S]) = 1,
(b) the principal function of a pure hyponormal operator T with rank-one

self-commutator x ⊗ x is a complete unitary invariant of T .
The remarkable assertion of (b) is due to Pincus and is in [18].
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Moreover, in the case of a homogeneous pure hyponormal operator T with
rank[T ∗, T ] = 1, the spectrum σ(T ) = D. Since the support of gT equals σ(T ),
therefore to find homogeneous pure hyponormal operators T with rank[T ∗, T ] = 1, we
have to check if the operator with 0 < gT (0) ⩽ 1 is homogeneous. From what is said
so far, it follows that the unilateral shift S is the unique (modulo unitary equivalence)
pure hyponormal operator with rank([S∗, S]) = 1 such that gS = 1D.
Theorem 4.3. The only homogeneous pure hyponormal operator T with rank of
[T ∗, T ] = 1, modulo unitary equivalence, is the unilateral shift.
Proof. In view of the discussion preceding the theorem, we have to show that there
is no homogeneous pure hyponormal operator T with rank of [T ∗, T ] = 1 such that
gT = c < 1. Let us suppose to the contrary that there exists such an operator T
with gT = c < 1. In the determinant expansion formula (2.2), setting gT = c, we have
(as in Example 2.4):

1 − ⟨(T ∗ − w̄)−1x, (T ∗ − z̄)−1x⟩ = exp
(

− 1
π

∫

σ(T )

gT (ζ)dA(ζ)
(ζ − z)(z̄ − w̄)

)

=
(

1 − 1
zw̄

)c

.

(4.2)

Putting z = w in Equation (4.2) we have the equality

1 − ∥(T ∗ − w)−1x∥2 =
(

1 − 1
|w|2

)c

. (4.3)

Since T is homogeneous and hyponormal, the spectrum σ(T ) can only be D, the
possibility of σ(T ) = T is ruled out by Putnam’s inequality. For a hyponormal
operator, the spectral radius ρ(T ) = ∥T∥ and we conclude that that

∥(T − wI)−1∥ = ρ((T − wI)−1) ⩽ 1
|w| .

Since [T ∗, T ] = x ⊗ x for some x ∈ H by hypothesis, taking p(z, z̄) = z̄ and q(z, z̄) = z
in the Helton–Howe formula we conclude that ∥x∥ =

√
c. Therefore,

∥(T ∗ − w)−1x∥ ⩽
√

c∥(T ∗ − w)−1∥,

and we conclude that
1 − ∥(T ∗ − w)−1x∥2 ≥ 1 − ∥(T ∗ − w)−1∥2∥x∥2

= 1 − c∥(T ∗ − w)−1∥2

⩾ 1 − c

|w|2 .

(4.4)

Combining the equality (4.3) with the inequality (4.4), we have
(

1 − c

|w|2
)
⩽

(
1 − 1

|w|2
)c

, |w| > 1. (4.5)
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It is easy to verify that the inequality (4.5) is false unless c = 1 completing the
proof.

We give an example of a class T consisting of unitarily inequivalent homogeneous
hyponormal operators such that [T ∗, T ] ∈ S1, rank [T ∗, T ] = ∞ such that gT1 = gT2

for every pair of operators T1, T2 ∈ T . Also, see remark below Lemma 1 in [22, p. 252].
Let T be the set of weighted shift operator {Tλ : λ > 1} with weight sequences

{wn(λ)}n⩾0, wn(λ) =
√

n+1
n+λ . For λ > 1, the weight sequence {wn(λ)} is strictly

increasing and hence Tλ is hyponormal. The operator Tλ is also pure and cyclic.
Clearly, [T ∗

λ , Tλ] is a diagonal operator Dλ with

Dλ(0, 0) = w0 and Dλ(i, i) = w2
i+1(λ) − w2

i (λ)) ̸= 0.

Thus, rank[T ∗, T ] = ∞. Moreover,

tr[T ∗
λ , Tλ] =

∞∑

i=0
(w2

i+1(λ) − w2
i (λ)) + w2

0(λ) = 1.

For λ1 ≠ λ2, the two operators Tλ1 and Tλ2 are unitarily inequivalent. But all these
operators are homogeneous, see [3]. Therefore, the principal function gTλ

is constant,
say c, on D. But then

1 = tr[T ∗
λ , Tλ] = 1

π

∫

D

c dA(ζ).

Thus, c = 1 and it follows that gTλ
is identically 1 on D for all λ > 1.

4.1. OPEN PROBLEM

Find all the pure hyponormal operators T such that [T ∗, T ] is in S1(H) and that gT is
constant on σ(T ) modulo unitary equivalence.

Remark 4.4. In studying homogeneous contractions T assuming that both the defect
indices of T are equal to 1, it was shown that the Sz.-Nagy–Foias characteristic function
of T must be constant. This observation leads to a class of homogeneous bi-lateral
shifts (all of them inequivalent among themselves), parametrized by c > 0, possessing
a constant characteristic function, see [1, 11].

Similarly, homogeneous operators T in the Cowen-Douglas class B1(D) are deter-
mined by specifying the curvature λ = −KT (0) > 0 just at one point. From this, one
infers that an operator T in B1(D) is homogeneous if and only if T is of the form T ∗

λ ,
λ > 0, discussed above (see [17]).

The situation involving the hyponormal operators T with rank[T ∗, T ] = 1, appears
to be very different. Here again, the unitary invariant gT , under the assumption of
homogeneity, is a constant function, say c, with 0 < c ⩽ 1. But there is only one
homogeneous hyponormal operator T with [T ∗, T ] = x ⊗ x, namely, the unilateral shift
corresponding to c = 1.
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4.2. POSTSCRIPT

In a conversation with the second author, in the year 1983, Kevin Clancey had remarked
that the only homogeneous pure hyponormal operator with rank 1 self-commutator
might be the unilateral shift. We have verified this statement to be correct in this
short note.
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