Opuscula Math. 44, no. 1 (2024), 105-134
https://doi.org/10.7494/OpMath.2024.44.1.105
Opuscula Mathematica
Singular quasilinear convective systems involving variable exponents
Abdelkrim Moussaoui
Dany Nabab
Jean Vélin
Abstract. The paper deals with the existence of solutions for quasilinear elliptic systems involving singular and convection terms with variable exponents. The approach combines the sub-supersolutions method and Schauder's fixed point theorem.
Keywords: \(p(x)\)-Laplacian, variable exponents, fixed point, singular system, gradient estimate, regularity.
Mathematics Subject Classification: 35J75, 35J48, 35J92.
- C.O. Alves, A. Moussaoui, Existence and regularity solutions for a class of singular \((p(x),q(x))\)-Laplacian systems, Complex Var. Elliptic Equ. 63 (2018), 188-210. https://doi.org/10.1080/17476933.2017.1298589
- C.O. Alves, A. Moussaoui, Existence of solutions for a class of singular elliptic systems with convection term, Asymptot. Anal. 90 (2013), 237-248. https://doi.org/10.3233/ASY-141245
- C.O. Alves, A. Moussaoui, L. Tavares, An elliptic system with logarithmic nonlinearity, Adv. Nonlinear Anal. 8 (2019), 928-945. https://doi.org/10.1515/anona-2017-0200
- D. Banks, An integral inequality, Proc. Amer. Math. Soc. 14 (1963), 823-828. https://doi.org/10.1090/S0002-9939-1963-0153806-8
- H. Brézis, Analyse fonctionnelle. Théorie et applications, Masson, Paris, 1983.
- H. Bueno, G. Ercole, A quasilinear problem with fast growing gradient, Appl. Math. Lett. 26 (2013), 520-523. https://doi.org/10.1016/j.aml.2012.12.009
- P. Candito, R. Livrea, A. Moussaoui, Singular quasilinear elliptic systems involving gradient terms, Nonlinear Anal. Real World Appl. 55 (2020), 103142. https://doi.org/10.1016/j.nonrwa.2020.103142
- A. Cianchi, V. Maz'ya, Global gradient estimates in elliptic problems under minimal data and domain regularity, Commun. Pure Appl. Anal. 14 (2015), 285-311. https://doi.org/10.3934/cpaa.2015.14.285
- H. Dellouche, A. Moussaoui, Singular quasilinear elliptic systems with gradient dependence, Positivity 26 (2022), Article no. 10. https://doi.org/10.1007/s11117-022-00868-3
- L. Diening, P. Hästö, P. Harjulehto, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer Berlin, Heidelberg, 2011.
- L.C. Evans, Partial Differential Equations, vol. 19, American Mathematical Soc., Providence, 2010.
- X. Fan, Global \(C^{1,\alpha}\) regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2007), 397-417. https://doi.org/10.1016/j.jde.2007.01.008
- X. Fan, D. Zhao, On the Spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega )\), J. Math. Anal. Appl. 263 (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617
- X.L. Fan, Q.H. Zhang, Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5
- U. Guarnatto, S.A. Marano, Infinitely many solutions to singular convective Neumann systems with arbitrarily growing reactions, J. Differential Equations 271 (2021), 849-863. https://doi.org/10.1016/j.jde.2020.09.024
- U. Guarnotta, S.A. Marano, A. Moussaoui, Singular quasilinear convective elliptic systems in \(\mathbb{R}^N\), Adv. Nonlinear Anal. 11 (2022), 741-756. https://doi.org/10.1515/anona-2021-0208
- D.D. Hai, Singular boundary value problems for the \(p\)-Laplacian, Nonlinear Anal. 73 (2010), 2876-2881. https://doi.org/10.1016/j.na.2010.06.037
- H. Hudzik, On generalized Orlicz-Sobolev spaces, Funct. Approx. Comment. Math. 4 (1976), 37-51.
- Y.H. Kim, L. Wang, C. Zhang, Global bifurcation for a class of degenerate elliptic equations with variable exponents, J. Math. Anal. Appl. 371 (2010), 624-637. https://doi.org/10.1016/j.jmaa.2010.05.058
- A.C. Lazer, P.J. Mckenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991), 721-730. https://doi.org/10.2307/2048410
- D. Nabab, J. Vélin, On a nonlinear elliptic system involving the \((p(x),q(x))\)-Laplacian operator with gradient dependence, Complex Var. Elliptic Equ. 67 (2021), 1554-1578. https://doi.org/10.1080/17476933.2021.1885385
- K. Perera, E.A. Silva, Existence and multiplicity of positive solutions for singular quasilinear problems, J. Math. Anal. Appl. 323 (2006), 1238-1252. https://doi.org/10.1016/j.jmaa.2005.11.014
- J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202. https://doi.org/10.1007/BF01449041
- E. Zeidler, Nonlinear Functional Analysis and its Applications. I: Fixed-point Theorems, Springer-Verlag, New York, 1986.
- Abdelkrim Moussaoui
- Applied Mathematics Laboratory (LMA), Faculty of Exact Sciences and Biology Departement, Faculty of Natural & Life Sciences, A. Mira Bejaia University, Targa Ouzemour, 06000 Bejaia, Algeria
- Dany Nabab
- Departement of Mathematics and Informatic, Faculty of Exact and Natural Sciences, Laboratory LAMIA, University of Antilles, Campus of Fouillole, 97159 Pointe-à-Pitre, Guadeloupe (FWI)
- Jean Vélin (corresponding author)
- Departement of Mathematics and Informatic, Faculty of Exact and Natural Sciences, Laboratory LAMIA, University of Antilles, Campus of Fouillole, 97159 Pointe-à-Pitre, Guadeloupe (FWI)
- Communicated by Vicenţiu D. Rădulescu.
- Received: 2022-09-25.
- Accepted: 2023-08-15.
- Published online: 2023-10-27.