Opuscula Math. 44, no. 1 (2024), 105-134
https://doi.org/10.7494/OpMath.2024.44.1.105

 
Opuscula Mathematica

Singular quasilinear convective systems involving variable exponents

Abdelkrim Moussaoui
Dany Nabab
Jean Vélin

Abstract. The paper deals with the existence of solutions for quasilinear elliptic systems involving singular and convection terms with variable exponents. The approach combines the sub-supersolutions method and Schauder's fixed point theorem.

Keywords: \(p(x)\)-Laplacian, variable exponents, fixed point, singular system, gradient estimate, regularity.

Mathematics Subject Classification: 35J75, 35J48, 35J92.

Full text (pdf)

  1. C.O. Alves, A. Moussaoui, Existence and regularity solutions for a class of singular \((p(x),q(x))\)-Laplacian systems, Complex Var. Elliptic Equ. 63 (2018), 188-210. https://doi.org/10.1080/17476933.2017.1298589
  2. C.O. Alves, A. Moussaoui, Existence of solutions for a class of singular elliptic systems with convection term, Asymptot. Anal. 90 (2013), 237-248. https://doi.org/10.3233/ASY-141245
  3. C.O. Alves, A. Moussaoui, L. Tavares, An elliptic system with logarithmic nonlinearity, Adv. Nonlinear Anal. 8 (2019), 928-945. https://doi.org/10.1515/anona-2017-0200
  4. D. Banks, An integral inequality, Proc. Amer. Math. Soc. 14 (1963), 823-828. https://doi.org/10.1090/S0002-9939-1963-0153806-8
  5. H. Brézis, Analyse fonctionnelle. Théorie et applications, Masson, Paris, 1983.
  6. H. Bueno, G. Ercole, A quasilinear problem with fast growing gradient, Appl. Math. Lett. 26 (2013), 520-523. https://doi.org/10.1016/j.aml.2012.12.009
  7. P. Candito, R. Livrea, A. Moussaoui, Singular quasilinear elliptic systems involving gradient terms, Nonlinear Anal. Real World Appl. 55 (2020), 103142. https://doi.org/10.1016/j.nonrwa.2020.103142
  8. A. Cianchi, V. Maz'ya, Global gradient estimates in elliptic problems under minimal data and domain regularity, Commun. Pure Appl. Anal. 14 (2015), 285-311. https://doi.org/10.3934/cpaa.2015.14.285
  9. H. Dellouche, A. Moussaoui, Singular quasilinear elliptic systems with gradient dependence, Positivity 26 (2022), Article no. 10. https://doi.org/10.1007/s11117-022-00868-3
  10. L. Diening, P. Hästö, P. Harjulehto, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer Berlin, Heidelberg, 2011.
  11. L.C. Evans, Partial Differential Equations, vol. 19, American Mathematical Soc., Providence, 2010.
  12. X. Fan, Global \(C^{1,\alpha}\) regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2007), 397-417. https://doi.org/10.1016/j.jde.2007.01.008
  13. X. Fan, D. Zhao, On the Spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega )\), J. Math. Anal. Appl. 263 (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617
  14. X.L. Fan, Q.H. Zhang, Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5
  15. U. Guarnatto, S.A. Marano, Infinitely many solutions to singular convective Neumann systems with arbitrarily growing reactions, J. Differential Equations 271 (2021), 849-863. https://doi.org/10.1016/j.jde.2020.09.024
  16. U. Guarnotta, S.A. Marano, A. Moussaoui, Singular quasilinear convective elliptic systems in \(\mathbb{R}^N\), Adv. Nonlinear Anal. 11 (2022), 741-756. https://doi.org/10.1515/anona-2021-0208
  17. D.D. Hai, Singular boundary value problems for the \(p\)-Laplacian, Nonlinear Anal. 73 (2010), 2876-2881. https://doi.org/10.1016/j.na.2010.06.037
  18. H. Hudzik, On generalized Orlicz-Sobolev spaces, Funct. Approx. Comment. Math. 4 (1976), 37-51.
  19. Y.H. Kim, L. Wang, C. Zhang, Global bifurcation for a class of degenerate elliptic equations with variable exponents, J. Math. Anal. Appl. 371 (2010), 624-637. https://doi.org/10.1016/j.jmaa.2010.05.058
  20. A.C. Lazer, P.J. Mckenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991), 721-730. https://doi.org/10.2307/2048410
  21. D. Nabab, J. Vélin, On a nonlinear elliptic system involving the \((p(x),q(x))\)-Laplacian operator with gradient dependence, Complex Var. Elliptic Equ. 67 (2021), 1554-1578. https://doi.org/10.1080/17476933.2021.1885385
  22. K. Perera, E.A. Silva, Existence and multiplicity of positive solutions for singular quasilinear problems, J. Math. Anal. Appl. 323 (2006), 1238-1252. https://doi.org/10.1016/j.jmaa.2005.11.014
  23. J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202. https://doi.org/10.1007/BF01449041
  24. E. Zeidler, Nonlinear Functional Analysis and its Applications. I: Fixed-point Theorems, Springer-Verlag, New York, 1986.
  • Abdelkrim Moussaoui
  • Applied Mathematics Laboratory (LMA), Faculty of Exact Sciences and Biology Departement, Faculty of Natural & Life Sciences, A. Mira Bejaia University, Targa Ouzemour, 06000 Bejaia, Algeria
  • Dany Nabab
  • Departement of Mathematics and Informatic, Faculty of Exact and Natural Sciences, Laboratory LAMIA, University of Antilles, Campus of Fouillole, 97159 Pointe-à-Pitre, Guadeloupe (FWI)
  • Jean Vélin (corresponding author)
  • Departement of Mathematics and Informatic, Faculty of Exact and Natural Sciences, Laboratory LAMIA, University of Antilles, Campus of Fouillole, 97159 Pointe-à-Pitre, Guadeloupe (FWI)
  • Communicated by Vicenţiu D. Rădulescu.
  • Received: 2022-09-25.
  • Accepted: 2023-08-15.
  • Published online: 2023-10-27.
Opuscula Mathematica - cover

Cite this article as:
Abdelkrim Moussaoui, Dany Nabab, Jean Vélin, Singular quasilinear convective systems involving variable exponents, Opuscula Math. 44, no. 1 (2024), 105-134, https://doi.org/10.7494/OpMath.2024.44.1.105

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.