Opuscula Math. 44, no. 1 (2024), 67-77
https://doi.org/10.7494/OpMath.2024.44.1.67

 
Opuscula Mathematica

Two-weight norm inequalities for rough fractional integral operators on Morrey spaces

Kwok-Pun Ho

Abstract. We establish the two-weight norm inequalities for the rough fractional integral operators on Morrey spaces.

Keywords: two-weight norm inequalities, rough fractional integral operators, Morrey spaces.

Mathematics Subject Classification: 42B20, 42B25, 46E30.

Full text (pdf)

  1. D. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), 765-778. https://doi.org/10.1215/S0012-7094-75-04265-9
  2. A. Almeida, J. Hasanov, S. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J. 15 (2008), 195-208. https://doi.org/10.1515/GMJ.2008.195
  3. Y. Ding, C.-C. Lin, Two-weight norm inequalities for the rough fractional integrals, Int. J. Math. Math. Sci. 25 (2001), 517-524. https://doi.org/10.1155/S0161171201003982
  4. Y. Ding, S. Lu, Weighted norm inequalities for fractional integral operator with rough kernel, Canad. J. Math. 50 (1998), 29-39. https://doi.org/10.4153/CJM-1998-003-1
  5. V. Guliyev, J. Hasanov, S. Samko, Boundedness of maximal, potential type and singular integral operators in the generalized variable exponent Morrey type spaces, J. Math. Sci. (N.Y.) 170 (2010), 423-443.
  6. V. Guliyev, J. Hasanov, S. Samko, Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces, Math. Scand. 107 (2010), 285-304. https://doi.org/10.7146/math.scand.a-15156
  7. K.-P. Ho, The fractional integral operators on Morrey spaces with variable exponent on unbounded domains, Math. Inequal. Appl. 16 (2013), 363-373. https://doi.org/10.7153/mia-16-27
  8. K.-P. Ho, Vector-valued operators with singular kernel and Treibel-Lizorkin block spaces with variable exponents, Kyoto J. Math. 56 (2016), 97-124. https://doi.org/10.1215/21562261-3445165
  9. K.-P. Ho, Poincaré, Sobolev and Stein-Weiss inequalities on Morrey spaces, , Publ. Res. Inst. Math. Sci. 53 (2017), 119-139. https://doi.org/10.4171/PRIMS/53-1-4
  10. K.-P. Ho, Fractional integral operators with homogeneous kernels on Morrey spaces with variable exponents, J. Math. Soc. Japan 69 (2017), 1059-1077. https://doi.org/10.2969/jmsj/06931059
  11. K.-P. Ho, Singular integral operators with rough kernel on Morrey type spaces, Studia Math. 244 (2019), 217-243. https://doi.org/10.4064/sm8390-8-2017
  12. K.-P. Ho, Weak type estimates of the fractional integral operators on Morrey spaces with variable exponents, Acta Appl. Math. 159 (2019), 1-10. https://doi.org/10.1007/s10440-018-0181-2
  13. K.-P. Ho, Potential type operators on weighted Morrey spaces, Arch. Math.118 (2022), 159-168. https://doi.org/10.1007/s00013-021-01685-y
  14. Y. Komori, S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr. 282 (2009), 219-231. https://doi.org/10.1002/mana.200610733
  15. B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Maths. Soc. 161 (1971), 249-258.
  16. E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, [in:] Banach and Function Spaces, Yokohama Publishers, Yokohama, 2004, 323-333.
  17. E. Nakai, Orlicz-Morrey spaces and the Hardy-Littlewood maximal function, Studia Math. 188 (2008), 193-221. https://doi.org/10.4064/sm188-3-1
  18. P. Olsen, Fractional integration, Morrey spaces and Schrödinger equation, Comm. Partial Differential Equations 20 (1995), 2005-2055. https://doi.org/10.1080/03605309508821161
  19. J. Peetre, On the theory of \(\mathcal{L}_{p,\lambda}\) spaces, J. Funct. Anal. 4 (1969), 71-87. https://doi.org/10.1016/0022-1236(69)90022-6
  20. Y. Sawano, S. Sugano, H. Tanaka, Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces, Trans. Amer. Math. Soc. 363 (2011), 6481-6503. https://doi.org/10.1090/S0002-9947-2011-05294-3
  21. Y. Sawano, S. Sugano, H. Tanaka, Orlicz-Morrey spaces and fractional operators, Potent. Anal. 36 (2012), 517-556. https://doi.org/10.1007/s11118-011-9239-8
  22. H. Tanaka, Two-weight norm inequalities on Morrey spaces, Ann. Acad. Sci. Fenn. Math. 40 (2015), 773-791. https://doi.org/10.5186/aasfm.2015.4042
  23. H. Wang, Weighted inequalities for fractional integral operators and linear commutators in the Morrey-type spaces, J. Inequal. Appl. 2017 (2017), Article no. 6. https://doi.org/10.1186/s13660-016-1279-6
  24. X. Ye, T. Wang, Two-weighted norm inequalities of singular integral operators on weighted Morrey spaces, Georgian Math. J. 24 (2017), 629-638. https://doi.org/10.1515/gmj-2016-0035
  25. T.-L. Yee, K.-P. Ho, Fractional integral operators with homogeneous kernels on generalized Lorentz-Morrey spaces, J. Math. Inequal. 15 (2021), 17-30. https://doi.org/10.7153/jmi-2021-15-03
  26. T.-L. Yee, K.-P. Ho, Two weighted norm inequalities of potential type operator on Herz spaces, Anal. Math. (to appear).
  • Kwok-Pun Ho
  • The Education University of Hong Kong, Department of Mathematics and Information Technology, 10 Lo Ping Road, Tai Po, Hong Kong, China
  • Communicated by P.A. Cojuhari.
  • Received: 2022-09-30.
  • Revised: 2023-08-08.
  • Accepted: 2023-08-10.
  • Published online: 2023-10-27.
Opuscula Mathematica - cover

Cite this article as:
Kwok-Pun Ho, Two-weight norm inequalities for rough fractional integral operators on Morrey spaces, Opuscula Math. 44, no. 1 (2024), 67-77, https://doi.org/10.7494/OpMath.2024.44.1.67

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.