Opuscula Math. 44, no. 1 (2024), 67-77
https://doi.org/10.7494/OpMath.2024.44.1.67
Opuscula Mathematica
Two-weight norm inequalities for rough fractional integral operators on Morrey spaces
Abstract. We establish the two-weight norm inequalities for the rough fractional integral operators on Morrey spaces.
Keywords: two-weight norm inequalities, rough fractional integral operators, Morrey spaces.
Mathematics Subject Classification: 42B20, 42B25, 46E30.
- D. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), 765-778. https://doi.org/10.1215/S0012-7094-75-04265-9
- A. Almeida, J. Hasanov, S. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J. 15 (2008), 195-208. https://doi.org/10.1515/GMJ.2008.195
- Y. Ding, C.-C. Lin, Two-weight norm inequalities for the rough fractional integrals, Int. J. Math. Math. Sci. 25 (2001), 517-524. https://doi.org/10.1155/S0161171201003982
- Y. Ding, S. Lu, Weighted norm inequalities for fractional integral operator with rough kernel, Canad. J. Math. 50 (1998), 29-39. https://doi.org/10.4153/CJM-1998-003-1
- V. Guliyev, J. Hasanov, S. Samko, Boundedness of maximal, potential type and singular integral operators in the generalized variable exponent Morrey type spaces, J. Math. Sci. (N.Y.) 170 (2010), 423-443.
- V. Guliyev, J. Hasanov, S. Samko, Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces, Math. Scand. 107 (2010), 285-304. https://doi.org/10.7146/math.scand.a-15156
- K.-P. Ho, The fractional integral operators on Morrey spaces with variable exponent on unbounded domains, Math. Inequal. Appl. 16 (2013), 363-373. https://doi.org/10.7153/mia-16-27
- K.-P. Ho, Vector-valued operators with singular kernel and Treibel-Lizorkin block spaces with variable exponents, Kyoto J. Math. 56 (2016), 97-124. https://doi.org/10.1215/21562261-3445165
- K.-P. Ho, Poincaré, Sobolev and Stein-Weiss inequalities on Morrey spaces, , Publ. Res. Inst. Math. Sci. 53 (2017), 119-139. https://doi.org/10.4171/PRIMS/53-1-4
- K.-P. Ho, Fractional integral operators with homogeneous kernels on Morrey spaces with variable exponents, J. Math. Soc. Japan 69 (2017), 1059-1077. https://doi.org/10.2969/jmsj/06931059
- K.-P. Ho, Singular integral operators with rough kernel on Morrey type spaces, Studia Math. 244 (2019), 217-243. https://doi.org/10.4064/sm8390-8-2017
- K.-P. Ho, Weak type estimates of the fractional integral operators on Morrey spaces with variable exponents, Acta Appl. Math. 159 (2019), 1-10. https://doi.org/10.1007/s10440-018-0181-2
- K.-P. Ho, Potential type operators on weighted Morrey spaces, Arch. Math.118 (2022), 159-168. https://doi.org/10.1007/s00013-021-01685-y
- Y. Komori, S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr. 282 (2009), 219-231. https://doi.org/10.1002/mana.200610733
- B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Maths. Soc. 161 (1971), 249-258.
- E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, [in:] Banach and Function Spaces, Yokohama Publishers, Yokohama, 2004, 323-333.
- E. Nakai, Orlicz-Morrey spaces and the Hardy-Littlewood maximal function, Studia Math. 188 (2008), 193-221. https://doi.org/10.4064/sm188-3-1
- P. Olsen, Fractional integration, Morrey spaces and Schrödinger equation, Comm. Partial Differential Equations 20 (1995), 2005-2055. https://doi.org/10.1080/03605309508821161
- J. Peetre, On the theory of \(\mathcal{L}_{p,\lambda}\) spaces, J. Funct. Anal. 4 (1969), 71-87. https://doi.org/10.1016/0022-1236(69)90022-6
- Y. Sawano, S. Sugano, H. Tanaka, Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces, Trans. Amer. Math. Soc. 363 (2011), 6481-6503. https://doi.org/10.1090/S0002-9947-2011-05294-3
- Y. Sawano, S. Sugano, H. Tanaka, Orlicz-Morrey spaces and fractional operators, Potent. Anal. 36 (2012), 517-556. https://doi.org/10.1007/s11118-011-9239-8
- H. Tanaka, Two-weight norm inequalities on Morrey spaces, Ann. Acad. Sci. Fenn. Math. 40 (2015), 773-791. https://doi.org/10.5186/aasfm.2015.4042
- H. Wang, Weighted inequalities for fractional integral operators and linear commutators in the Morrey-type spaces, J. Inequal. Appl. 2017 (2017), Article no. 6. https://doi.org/10.1186/s13660-016-1279-6
- X. Ye, T. Wang, Two-weighted norm inequalities of singular integral operators on weighted Morrey spaces, Georgian Math. J. 24 (2017), 629-638. https://doi.org/10.1515/gmj-2016-0035
- T.-L. Yee, K.-P. Ho, Fractional integral operators with homogeneous kernels on generalized Lorentz-Morrey spaces, J. Math. Inequal. 15 (2021), 17-30. https://doi.org/10.7153/jmi-2021-15-03
- T.-L. Yee, K.-P. Ho, Two weighted norm inequalities of potential type operator on Herz spaces, Anal. Math. (to appear).
- Kwok-Pun Ho
- The Education University of Hong Kong, Department of Mathematics and Information Technology, 10 Lo Ping Road, Tai Po, Hong Kong, China
- Communicated by P.A. Cojuhari.
- Received: 2022-09-30.
- Revised: 2023-08-08.
- Accepted: 2023-08-10.
- Published online: 2023-10-27.