Opuscula Math. 44, no. 1 (2024), 19-47
https://doi.org/10.7494/OpMath.2024.44.1.19
Opuscula Mathematica
Local existence for a viscoelastic Kirchhoff type equation with the dispersive term, internal damping, and logarithmic nonlinearity
Sebastião Cordeiro
Carlos Raposo
Jorge Ferreira
Daniel Rocha
Mohammad Shahrouzi
Abstract. This paper concerns a viscoelastic Kirchhoff-type equation with the dispersive term, internal damping, and logarithmic nonlinearity. We prove the local existence of a weak solution via a modified lemma of contraction of the Banach fixed-point theorem. Although the uniqueness of a weak solution is still an open problem, we proved uniqueness locally for specifically suitable exponents. Furthermore, we established a result for local existence without guaranteeing uniqueness, stating a contraction lemma.
Keywords: viscoelastic equation, dispersive term, logarithmic nonlinearity, local existence.
Mathematics Subject Classification: 35A01, 35L20, 35L70.
- J. Barrow, P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D 52 (1995), 5576-5587. https://doi.org/10.1103/physrevd.52.5576
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, London, 2010.
- M.M. Cavalcanti, V.N. Domingos Cavalcanti, I. Lasiecka, C.M. Webler, Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density, Adv. Nonlinear Anal. 6 (2017), 121-145. https://doi.org/10.1515/anona-2016-0027
- E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Inc, New York, 1955.
- Y. Chen, R. Xu, Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal. 92 (2020), 111664. https://doi.org/10.1016/j.na.2019.111664
- M. Conti, E.M. Marchini, V. Pata, A well posedness result for nonlinear viscoelastic equations with memory, Nonlinear Anal. Theory Methods Appl. 94 (2014), 206-216. https://doi.org/10.1016/j.na.2013.08.015
- S.M.S. Cordeiro, D.C. Pereira, C.A.C. Baldez, C.A.R. Cunha, Global existence and asymptotic behavior for a Timoshenko system with internal damping and logarithmic source terms, Arab. J. Math. 12 (2022), 105-118. https://doi.org/10.1007/s40065-022-00411-y
- S.M.S. Cordeiro, D.C. Pereira, J. Ferreira, C.A. Raposo, Global solutions and exponential decay to a Klein-Gordon equation of Kirchhoff-Carrier type with strong damping and nonlinear logarithmic source term, Partial Differ. Equ. Appl. Math. 3 (2021), 100018. https://doi.org/10.1016/j.padiff.2020.100018
- C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal. 37 (1970), 297-308. https://doi.org/10.1007/BF00251609
- K. Enqvist, J. McDonald, Q-balls and baryogenesis in the MSSM}, Phys. Lett. B 425 (1998), 309-321. https://doi.org/10.1016/S0370-2693(98)00271-8
- J. Ferreira, M. Shahrouzi, S. Cordeiro, D. Rocha, Blow up of solution for a nonlinear viscoelastic problem with internal damping and logarithmic source term,J. Math. Mech. Comput. Sci. [S.l.] 116 (2022), 15-24. https://doi.org/10.26577/JMMCS.2022.v116.i4.02
- J. Han, R. Xu, C. Yang, Improved growth estimate of infinite time blowup solution for a semilinear hyperbolic equation with logarithmic nonlinearity, Appl. Math. Lett. 143 (2023), 108670. https://doi.org/10.1016/j.aml.2023.108670
- M.-T. Lacroix-Sonrier, Distribution Espaces de Sobolev Aplications, Ellipses, 1998.
- W. Lian, Md Salik Ahmed, R. Xu, Global existence and blow up of solution for semi-linear hyperbolic equation with the product of logarithmic and power-type nonlinearity, Opuscula Math. 40 (2020), 111-130. https://doi.org/10.7494/OpMath.2020.40.1.111
- W. Lian, R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal. 9 (2020), 613-632.
- J.L. Lions, Quelques méthodes de resolution des problèmes aux limites non lineaires, Dunod, Paris, 1968.
- J.L. Lions, On some questions in boundary value problems of mathematical physics, IM-UFRJ, Brazil, 1978.
- W. Liu, G. Li, L. Hong, General decay and blow-up of solutions for a system of viscoelastic equations of Kirchhoff type with strong damping, J. Funct. Spaces 2014 (2014), Article ID 284809. https://doi.org/10.1155/2014/284809
- Y. Liu, B. Moon, V.D. Rădulescu, R. Xu, C. Yang, Qualitative properties of solution to a viscoelastic Kirchhoff-like plate equation, Math. Phys. 64 (2023), 1-56.
- A.H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, New York, 1944.
- S.A. Messaoudi, N. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Methods Appl. Sci. 30 (2007), 665-680. https://doi.org/10.1002/mma.804
- N. Mezoua, S.M. Boulaaras, A. Allahem, Global existence of solutions for the viscoelastic Kirchhoff equation with logarithmic source terms, Complexity 2020 (2020), Article ID 7105387. https://doi.org/10.1155/2020/7105387
- K. Nishihara, On a global solution of some quasilinear hyperbolic equation, Tokyo J. Math. 7 (1984), 437-459. https://doi.org/10.3836/tjm/1270151737
- N. Pan, P. Pucci, R. Xu, B. Zhang, Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms, J. Evol. Equ. 19 (2019), 615-643. https://doi.org/10.1007/s00028-019-00489-6
- S.I. Pohozaev, On a class of quasilinear hyperbolic equations, Mat. USSR Sbornik 25 (1975), 145-148.
- X. Wang, Y. Chen, Y. Yang, J. Li, R. Xu, Kirchhoff-type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal. 188 (2019), 475-499. https://doi.org/10.1016/j.na.2019.06.019
- X. Wang, R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal. 10 (2021), 261-288. https://doi.org/10.1515/anona-2020-0141
- A.J. Weir, Lebesque Integration and Measure, Reader in Mathematics and Education, University of Sussex, 1973.
- Sebastião Cordeiro
https://orcid.org/0000-0001-5354-2071
- Federal University of Pará, Faculty of Exact Sciences and Technology, R. Manoel de Abreu, Abaetetuba, 68440-000, Pará, Brazil
- Carlos Raposo (corresponding author)
https://orcid.org/0000-0001-8014-7499
- Federal University of Bahia, Department of Mathematics, Av. Milton Santos, Salvador, 40170-110, Bahia, Brazil
- Jorge Ferreira
https://orcid.org/0000-0002-3209-7439
- Federal Fluminense University, Department of Exact Sciences, Avenida dos Trabalhadores, Volta Redonda, 27255-125, Rio de Janeiro, Brazil
- Daniel Rocha
https://orcid.org/0000-0002-3115-354X
- Federal University of Pará, Institute of Exact and Natural Sciences, R. Augusto Corrêa, Belém, 66075-110, Pará, Brazil
- Mohammad Shahrouzi
https://orcid.org/0000-0001-9308-0115
- Jahrom University, Department of Mathematics, GJPJ+8PW, Jahrom, 74137-66171, Fars Province, Iran
- Communicated by Runzhang Xu.
- Received: 2023-03-08.
- Revised: 2023-08-04.
- Accepted: 2023-08-06.
- Published online: 2023-10-27.