Opuscula Math. 44, no. 1 (2024), 5-17
https://doi.org/10.7494/OpMath.2024.44.1.5

 
Opuscula Mathematica

Uniqueness for a class p-Laplacian problems when a parameter is large

B. Alreshidi
D.D. Hai

Abstract. We prove uniqueness of positive solutions for the problem \[-\Delta_{p}u=\lambda f(u)\text{ in }\Omega,\ u=0\text{ on }\partial \Omega,\] where \(1\lt p\lt 2\) and \(p\) is close to 2, \(\Omega\) is bounded domain in \(\mathbb{R}^{n}\) with smooth boundary \(\partial \Omega\), \(f:[0,\infty)\rightarrow [0,\infty )\) with \(f(z)\sim z^{\beta }\) at \(\infty\) for some \(\beta \in (0,1)\), and \(\lambda\) is a large parameter. The monotonicity assumption on \(f\) is not required even for \(u\) large.

Keywords: singular \(p\)-Laplacian, uniqueness, positive solutions.

Mathematics Subject Classification: 35J92, 35J75.

Full text (pdf)

  1. A. Alsaedi, V.D. Radulescu, B. Ahmad, Bifurcation analysis for degenerate problems with mixed regime and absorption, Bull. Math. Sci. 11 (2021), Paper no. 2050017. https://doi.org/10.1142/S1664360720500174
  2. H. Brezis, Analyse fonctionnelle, théorie et applications, 2nd ed., Masson, Paris, 1983 [in French].
  3. H. Brezis, L. Oswald, Remark on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55-64. https://doi.org/10.1016/0362-546X(86)90011-8
  4. S. Chen, C.A. Santos, M. Yang, J. Zhou, Bifurcation analysis for a modified quasilinear equation with negative exponent, Adv. Nonlinear Anal. 11 (2022), no. 1, 684-701. https://doi.org/10.1515/anona-2021-0215
  5. K.D. Chu, D.D. Hai, R. Shivaji, Uniqueness for a class of singular quasilinear Dirichlet problem, Appl. Math. Lett. 106 (2020), 106306. https://doi.org/10.1016/j.aml.2020.106306
  6. P.T. Cong, D.D. Hai, R. Shivaji, A uniqueness result for a class of singular \(p\)-Laplacian Dirichlet problem with non-monotone forcing term, Proc. Amer. Math. Soc. 150 (2021), 633-637.
  7. E.N. Dancer, Uniqueness for elliptic equations when a parameter is large, Nonlinear Anal. 8 (1984), 835-836. https://doi.org/10.1016/0362-546X(84)90080-4
  8. E.N. Dancer, On the number of positive solutions of semilinear elliptic systems, Proc. London Math. Soc. 53 (1986), 429-452. https://doi.org/10.1112/plms/s3-53.3.429
  9. J.I. Díaz, J.E. Saa, Existence et unicité de solutions positives pur certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris 305 (1987), 521-524.
  10. P. Drábek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problems, Nonlinear Anal. 44 (2001), 189-204. https://doi.org/10.1016/S0362-546X(99)00258-8
  11. Z. Guo, J.R.L. Webb, Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Roy. Soc. Edinburgh 124 (1994), 189-198. https://doi.org/10.1017/S0308210500029280
  12. D.D. Hai, Uniqueness of positive solutions for a class of quasilinear problems, Nonlinear Anal. 69 (2008), 2720-2732. https://doi.org/10.1016/j.na.2007.08.046
  13. B. Kawohl, On a family of torsional creep problems, J. Reine Angew. Math. 410 (1990), 1-22.
  14. G.M. Lieberman, Boundary regularity for solutions of degenerate quasilinear elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219. https://doi.org/10.1016/0362-546X(88)90053-3
  15. S.S. Lin, On the number of positive solutions for nonlinear elliptic equations when a parameter is large, Nonlinear Anal. 16 (1991), 283-297.
  16. S.S. Lin, Some uniqueness results for positone problems when a parameter is large, Chinese J. Math. 13 (1985), 67-81.
  17. T. Oden, Qualitative Methods in Nonlinear Mechanics, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1986.
  18. N.S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math. 42 (2022), no. 2, 257-278. https://doi.org/10.7494/OpMath.2022.42.2.257
  19. N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Nonlinear Analysis - Theory and Methods, Springer Monographs in Mathematics, Cham, 2019.
  20. N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures Appl. 136 (2020), 1-21. https://doi.org/10.1016/j.matpur.2020.02.004
  21. S. Sakaguchi, Concavity properties of solutions of some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987), 403-421.
  22. J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202. https://doi.org/10.1007/BF01449041
  • B. Alreshidi
  • Mississippi State University, Department of Mathematics and Statistics, Mississippi State, MS 39762, USA
  • D.D. Hai (corresponding author)
  • Mississippi State University, Department of Mathematics and Statistics, Mississippi State, MS 39762, USA
  • Communicated by Vicenţiu D. Rădulescu.
  • Received: 2023-02-22.
  • Revised: 2023-08-23.
  • Accepted: 2023-08-27.
  • Published online: 2023-10-27.
Opuscula Mathematica - cover

Cite this article as:
B. Alreshidi, D.D. Hai, Uniqueness for a class p-Laplacian problems when a parameter is large, Opuscula Math. 44, no. 1 (2024), 5-17, https://doi.org/10.7494/OpMath.2024.44.1.5

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.