Opuscula Math. 44, no. 1 (2024), 5-17
https://doi.org/10.7494/OpMath.2024.44.1.5
Opuscula Mathematica
Uniqueness for a class p-Laplacian problems when a parameter is large
Abstract. We prove uniqueness of positive solutions for the problem \[-\Delta_{p}u=\lambda f(u)\text{ in }\Omega,\ u=0\text{ on }\partial \Omega,\] where \(1\lt p\lt 2\) and \(p\) is close to 2, \(\Omega\) is bounded domain in \(\mathbb{R}^{n}\) with smooth boundary \(\partial \Omega\), \(f:[0,\infty)\rightarrow [0,\infty )\) with \(f(z)\sim z^{\beta }\) at \(\infty\) for some \(\beta \in (0,1)\), and \(\lambda\) is a large parameter. The monotonicity assumption on \(f\) is not required even for \(u\) large.
Keywords: singular \(p\)-Laplacian, uniqueness, positive solutions.
Mathematics Subject Classification: 35J92, 35J75.
- A. Alsaedi, V.D. Radulescu, B. Ahmad, Bifurcation analysis for degenerate problems with mixed regime and absorption, Bull. Math. Sci. 11 (2021), Paper no. 2050017. https://doi.org/10.1142/S1664360720500174
- H. Brezis, Analyse fonctionnelle, théorie et applications, 2nd ed., Masson, Paris, 1983 [in French].
- H. Brezis, L. Oswald, Remark on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55-64. https://doi.org/10.1016/0362-546X(86)90011-8
- S. Chen, C.A. Santos, M. Yang, J. Zhou, Bifurcation analysis for a modified quasilinear equation with negative exponent, Adv. Nonlinear Anal. 11 (2022), no. 1, 684-701. https://doi.org/10.1515/anona-2021-0215
- K.D. Chu, D.D. Hai, R. Shivaji, Uniqueness for a class of singular quasilinear Dirichlet problem, Appl. Math. Lett. 106 (2020), 106306. https://doi.org/10.1016/j.aml.2020.106306
- P.T. Cong, D.D. Hai, R. Shivaji, A uniqueness result for a class of singular \(p\)-Laplacian Dirichlet problem with non-monotone forcing term, Proc. Amer. Math. Soc. 150 (2021), 633-637.
- E.N. Dancer, Uniqueness for elliptic equations when a parameter is large, Nonlinear Anal. 8 (1984), 835-836. https://doi.org/10.1016/0362-546X(84)90080-4
- E.N. Dancer, On the number of positive solutions of semilinear elliptic systems, Proc. London Math. Soc. 53 (1986), 429-452. https://doi.org/10.1112/plms/s3-53.3.429
- J.I. Díaz, J.E. Saa, Existence et unicité de solutions positives pur certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris 305 (1987), 521-524.
- P. Drábek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problems, Nonlinear Anal. 44 (2001), 189-204. https://doi.org/10.1016/S0362-546X(99)00258-8
- Z. Guo, J.R.L. Webb, Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Roy. Soc. Edinburgh 124 (1994), 189-198. https://doi.org/10.1017/S0308210500029280
- D.D. Hai, Uniqueness of positive solutions for a class of quasilinear problems, Nonlinear Anal. 69 (2008), 2720-2732. https://doi.org/10.1016/j.na.2007.08.046
- B. Kawohl, On a family of torsional creep problems, J. Reine Angew. Math. 410 (1990), 1-22.
- G.M. Lieberman, Boundary regularity for solutions of degenerate quasilinear elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219. https://doi.org/10.1016/0362-546X(88)90053-3
- S.S. Lin, On the number of positive solutions for nonlinear elliptic equations when a parameter is large, Nonlinear Anal. 16 (1991), 283-297.
- S.S. Lin, Some uniqueness results for positone problems when a parameter is large, Chinese J. Math. 13 (1985), 67-81.
- T. Oden, Qualitative Methods in Nonlinear Mechanics, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1986.
- N.S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math. 42 (2022), no. 2, 257-278. https://doi.org/10.7494/OpMath.2022.42.2.257
- N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Nonlinear Analysis - Theory and Methods, Springer Monographs in Mathematics, Cham, 2019.
- N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures Appl. 136 (2020), 1-21. https://doi.org/10.1016/j.matpur.2020.02.004
- S. Sakaguchi, Concavity properties of solutions of some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987), 403-421.
- J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202. https://doi.org/10.1007/BF01449041
- B. Alreshidi
- Mississippi State University, Department of Mathematics and Statistics, Mississippi State, MS 39762, USA
- D.D. Hai (corresponding author)
- Mississippi State University, Department of Mathematics and Statistics, Mississippi State, MS 39762, USA
- Communicated by Vicenţiu D. Rădulescu.
- Received: 2023-02-22.
- Revised: 2023-08-23.
- Accepted: 2023-08-27.
- Published online: 2023-10-27.