Opuscula Math. 43, no. 6 (2023), 759-788
https://doi.org/10.7494/OpMath.2023.43.6.759

 
Opuscula Mathematica

Regularity and existence of solutions to parabolic equations with nonstandard p(x,t),q(x,t)-growth conditions

Hamid El Bahja

Abstract. We study the Cauchy-Dirichlet problem for a class of nonlinear parabolic equations driven by nonstandard \(p(x,t),q(x,t)\)-growth condition. We prove theorems of existence and uniqueness of weak solutions in suitable Orlicz-Sobolev spaces, derive global and local in time \(L^{\infty}\) bounds for the weak solutions.

Keywords: existence theory, nonlinear parabolic problems, nonstandard growth, regularity theory.

Mathematics Subject Classification: 35K55, 35K65.

Full text (pdf)

  1. Y. Alkhutov, V. Zhikov, Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent, Mat. Sb. 205 (2014), no. 3, 307-318. https://doi.org/10.1070/SM2014v205n03ABEH004377
  2. V. Ambrosio, V.D. Rădulescu, Fractional double-phase patterns: concentration and multiplicity of solutions, J. Math. Pures Appl. 142 (2020), 101-145. https://doi.org/10.1016/j.matpur.2020.08.011
  3. S. Antontsev, S. Shmarev, Evolution PDEs with Nonstansdard Growth Conditions, Atlantis Press, Amsterdam, 2015.
  4. S. Antontsev, S. Shmarev, Anisotropic parabolic equations with variable nonlinearity, Publ. Mat. 53 (2009), 355-399.
  5. R. Arora, S. Shmarev, Double-phase parabolic equations with variable growth and nonlinear sources, Adv. Nonlinear Anal. 12 (2023), 304-335. https://doi.org/10.1515/anona-2022-0271
  6. P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), Article no. 62. https://doi.org/10.1007/s00526-018-1332-z
  7. V. Benci, P. d'Avenia, D. Fortunato, L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal. 154 (2000), 297-324. https://doi.org/10.1007/s002050000101
  8. V. Bögelein, F. Duzaar, P. Marcellini, Existence of evolutionary variational solutions via the calculus of variations, J. Differential Equations 256 (2014), no. 12, 3912-3942. https://doi.org/10.1016/j.jde.2014.03.005
  9. L. Chefils, Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with \(p\&q\)-Laplacian, Commun. Pure Appl. Anal. 4 (2005), no. 1, 9-22. https://doi.org/10.3934/cpaa.2005.4.9
  10. C. De Filippis, G. Mingione, A borderline case of Calderón-Zygmund estimates for non-uniformly elliptic problems, St. Petersburg Math. J. 31 (2020), 455-477. https://doi.org/10.1090/spmj/1608
  11. G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys. 5 (1964), 1252-1254. https://doi.org/10.1063/1.1704233
  12. E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
  13. M. Ding, C. Zhang, S. Zhou, Global boundedness and Hölder regularity of solutions to general \(p(x,t)\)-Laplace parabolic equations, Math. Meth. Appl. Sci. 43 (2020), no. 9, 5809-5831. https://doi.org/10.1002/mma.6325
  14. H. El Bahja, Existence of weak solutions to an anisotropic parabolic-parabolic chemotaxis system, Proc. Roy. Soc. Edinburgh Sect. A (2023), 1-21. https://doi.org/10.1017/prm.2023.18
  15. H. El Bahja, Bounded nonnegative weak solutions to anisotropic parabolic double phase problems with variable growth, Appl. Anal. 102 (2023), no. 8, 2234-2247. https://doi.org/10.1080/00036811.2021.2021191
  16. A.H. Erhardt, Compact embedding for \(p(x,t)\)-Sobolev spaces and existence theory to parabolic equations with \(p(x,t)\)-growth, Rev. Mat. Complut. 30 (2017), 35-61. https://doi.org/10.1007/s13163-016-0211-4
  17. P. Marcellini, A variational approach to parabolic equations under general and \(p\),\(q\)-growth conditions, Nonlinear Anal. 194 (2020), 111456. https://doi.org/10.1016/j.na.2019.02.010
  18. M.A. Ragusa, A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020), no. 1, 710-728. https://doi.org/10.1515/anona-2020-0022
  19. T. Roubicek, Nonlinear Partial Differential Equations with Applications, International Series of Numerical Mathematics, vol. 153, 2nd ed., Birkhäuser, Basel, 2013.
  20. P. Winkert, R. Zacher, Global a priori bounds for weak solutions to quasilinear parabolic equations with nonstandard growth, Nonlinear Anal. 145 (2016), 1-23. https://doi.org/10.1016/j.na.2016.06.012
  21. M. Yu, X. Lian, Boundedness of solutions of parabolic equations with anisotropic growth conditions, Canad. J. Math. 49 (1997), no. 4, 798-809. https://doi.org/10.4153/CJM-1997-040-2
  22. Q. Zhang, V.D. Rădulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl. 118 (2018), 159-203. https://doi.org/10.1016/j.matpur.2018.06.015
  23. V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR, Ser. Mat. 50 (1986), 675-710.
  24. V.V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys. 3 (1995), 264-269.
  25. V.V. Zhikov, On some variational problems, Russ. J. Math. Phys. 5 (1997), no. 1, 105-116.
  • Communicated by J.I. Díaz.
  • Received: 2023-05-20.
  • Accepted: 2023-06-16.
  • Published online: 2023-07-22.
Opuscula Mathematica - cover

Cite this article as:
Hamid El Bahja, Regularity and existence of solutions to parabolic equations with nonstandard p(x,t),q(x,t)-growth conditions, Opuscula Math. 43, no. 6 (2023), 759-788, https://doi.org/10.7494/OpMath.2023.43.6.759

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.