Opuscula Math. 43, no. 6 (2023), 759-788
https://doi.org/10.7494/OpMath.2023.43.6.759
Opuscula Mathematica
Regularity and existence of solutions to parabolic equations with nonstandard p(x,t),q(x,t)-growth conditions
Abstract. We study the Cauchy-Dirichlet problem for a class of nonlinear parabolic equations driven by nonstandard \(p(x,t),q(x,t)\)-growth condition. We prove theorems of existence and uniqueness of weak solutions in suitable Orlicz-Sobolev spaces, derive global and local in time \(L^{\infty}\) bounds for the weak solutions.
Keywords: existence theory, nonlinear parabolic problems, nonstandard growth, regularity theory.
Mathematics Subject Classification: 35K55, 35K65.
- Y. Alkhutov, V. Zhikov, Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent, Mat. Sb. 205 (2014), no. 3, 307-318. https://doi.org/10.1070/SM2014v205n03ABEH004377
- V. Ambrosio, V.D. Rădulescu, Fractional double-phase patterns: concentration and multiplicity of solutions, J. Math. Pures Appl. 142 (2020), 101-145. https://doi.org/10.1016/j.matpur.2020.08.011
- S. Antontsev, S. Shmarev, Evolution PDEs with Nonstansdard Growth Conditions, Atlantis Press, Amsterdam, 2015.
- S. Antontsev, S. Shmarev, Anisotropic parabolic equations with variable nonlinearity, Publ. Mat. 53 (2009), 355-399.
- R. Arora, S. Shmarev, Double-phase parabolic equations with variable growth and nonlinear sources, Adv. Nonlinear Anal. 12 (2023), 304-335. https://doi.org/10.1515/anona-2022-0271
- P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), Article no. 62. https://doi.org/10.1007/s00526-018-1332-z
- V. Benci, P. d'Avenia, D. Fortunato, L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal. 154 (2000), 297-324. https://doi.org/10.1007/s002050000101
- V. Bögelein, F. Duzaar, P. Marcellini, Existence of evolutionary variational solutions via the calculus of variations, J. Differential Equations 256 (2014), no. 12, 3912-3942. https://doi.org/10.1016/j.jde.2014.03.005
- L. Chefils, Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with \(p\&q\)-Laplacian, Commun. Pure Appl. Anal. 4 (2005), no. 1, 9-22. https://doi.org/10.3934/cpaa.2005.4.9
- C. De Filippis, G. Mingione, A borderline case of Calderón-Zygmund estimates for non-uniformly elliptic problems, St. Petersburg Math. J. 31 (2020), 455-477. https://doi.org/10.1090/spmj/1608
- G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys. 5 (1964), 1252-1254. https://doi.org/10.1063/1.1704233
- E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
- M. Ding, C. Zhang, S. Zhou, Global boundedness and Hölder regularity of solutions to general \(p(x,t)\)-Laplace parabolic equations, Math. Meth. Appl. Sci. 43 (2020), no. 9, 5809-5831. https://doi.org/10.1002/mma.6325
- H. El Bahja, Existence of weak solutions to an anisotropic parabolic-parabolic chemotaxis system, Proc. Roy. Soc. Edinburgh Sect. A (2023), 1-21. https://doi.org/10.1017/prm.2023.18
- H. El Bahja, Bounded nonnegative weak solutions to anisotropic parabolic double phase problems with variable growth, Appl. Anal. 102 (2023), no. 8, 2234-2247. https://doi.org/10.1080/00036811.2021.2021191
- A.H. Erhardt, Compact embedding for \(p(x,t)\)-Sobolev spaces and existence theory to parabolic equations with \(p(x,t)\)-growth, Rev. Mat. Complut. 30 (2017), 35-61. https://doi.org/10.1007/s13163-016-0211-4
- P. Marcellini, A variational approach to parabolic equations under general and \(p\),\(q\)-growth conditions, Nonlinear Anal. 194 (2020), 111456. https://doi.org/10.1016/j.na.2019.02.010
- M.A. Ragusa, A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020), no. 1, 710-728. https://doi.org/10.1515/anona-2020-0022
- T. Roubicek, Nonlinear Partial Differential Equations with Applications, International Series of Numerical Mathematics, vol. 153, 2nd ed., Birkhäuser, Basel, 2013.
- P. Winkert, R. Zacher, Global a priori bounds for weak solutions to quasilinear parabolic equations with nonstandard growth, Nonlinear Anal. 145 (2016), 1-23. https://doi.org/10.1016/j.na.2016.06.012
- M. Yu, X. Lian, Boundedness of solutions of parabolic equations with anisotropic growth conditions, Canad. J. Math. 49 (1997), no. 4, 798-809. https://doi.org/10.4153/CJM-1997-040-2
- Q. Zhang, V.D. Rădulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl. 118 (2018), 159-203. https://doi.org/10.1016/j.matpur.2018.06.015
- V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR, Ser. Mat. 50 (1986), 675-710.
- V.V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys. 3 (1995), 264-269.
- V.V. Zhikov, On some variational problems, Russ. J. Math. Phys. 5 (1997), no. 1, 105-116.
- Hamid El Bahja
https://orcid.org/0000-0002-0945-2105
- African Institute for Mathematical Sciences, Cape Town, South Africa
- Communicated by J.I. Díaz.
- Received: 2023-05-20.
- Accepted: 2023-06-16.
- Published online: 2023-07-22.