Opuscula Math. 43, no. 5 (2023), 703-734
https://doi.org/10.7494/OpMath.2023.43.5.703

 
Opuscula Mathematica

Existence and smoothing effects of the initial-boundary value problem for \(\partial u/\partial t-\Delta\sigma(u)=0\) in time-dependent domains

Mitsuhiro Nakao

Abstract. We show the existence, smoothing effects and decay properties of solutions to the initial-boundary value problem for a generalized porous medium type parabolic equations of the form \[u_t-\Delta \sigma(u) =0 \quad \text{in } Q(0, T)\] with the initial and boundary conditions \[u(0)=u_0 \quad \text{and} \quad u(t)|_{\partial \Omega(t)}=0,\] where \(\Omega(t)\) is a bounded domain in \(R^N\) for each \(t \geq 0\) and \[Q(0,T)=\bigcup_{0 \lt t \lt T} \Omega(t) \times \{t\}, \quad T>0.\] Our class of \(\sigma(u)\) includes \(\sigma(u)=|u|^m u\), \(\sigma(u)=u \log (1+ |u|^m)\), \(0\leq m \leq 2\), and \(\sigma(u)=|u|^{m}u/\sqrt{1+|u|^2}\), \(1 \leq m \leq 2\), etc. We derive precise estimates for \(\|u(t)\|_{\Omega(t),\infty}\) and \(\|\nabla\sigma(u(t))\|^2_{\Omega(t),2}\), \(t\gt 0\), depending on \(\|u_0\|_{\Omega(0),r}\) and the movement of \(\partial\Omega(t)\).

Keywords: quasilinear parabolic equation, time-dependent domain, smoothing effects.

Mathematics Subject Classification: 35B40, 35K92.

Full text (pdf)

  1. N.D. Alikakos, R. Rostamian, Gradient estimates for degenerate diffusion equations. I, Math. Ann. 259 (1982), no. 1, 53-70. https://doi.org/10.1007/BF01456828
  2. S. Antontsev, J.I. Díaz, S. Shmarev, Energy Methods for Free Boundary Problems Applications to Nonlinear PDEs and Fluid Mechanics, Ser. Progress in Nonlinear Differential Equations and Their Applications, vol. 48, Birkhäuser, Boston, 2002.
  3. J. Cooper, Local decay of solutions of the wave equation in the exterior of a moving body, J. Math. Anal. Appl. 49 (1975), 130-153. https://doi.org/10.1016/0022-247X(75)90165-1
  4. J.I. Díaz, Mathematical analysis of some diffusive energy balance models in climatology, Mathematics, Climate and Environment, RMA Res. Notes Appl. Math., vol. 27, Masson, Paris, 1993, 28-56.
  5. E. DiBenedetto, Degenerate Parabolic Equations, Springer, New York, NY, 1993.
  6. K. Lee, A mixed problem for hyperbolic equations with time-dependent domain, J. Math. Anal. Appl. 16 (1966), 455-471. https://doi.org/10.1016/0022-247X(66)90156-9
  7. G.M. Lieberman, Second Order Parabolic Differential Equations, Revised ed., World Scientific, Singapore, 2005.
  8. M. Nakao, On solutions to the initial-boundary value problem for \(\partial u/\partial t - \Delta \beta(u)=f\), J. Math. Soc. Japan 35 (1983), no. 1, 71-83. https://doi.org/10.2969/jmsj/03510071
  9. M. Nakao, Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations, Nonlinear Anal. 10 (1986), no. 3, 299-314. https://doi.org/10.1016/0362-546X(86)90005-2
  10. M. Nakao, Smoothing effects of the initial-boundary value problem for logarithmic type quasilinear parabolic equations, J. Math. Anal. Appl. 462 (2018), no. 2, 1585-1604. https://doi.org/10.1016/j.jmaa.2018.02.061
  11. M. Nakao, Existence and smoothing effect of the initial-boundary value problem for quasilinear parabolic equations in time-dependent domains, submitted.
  12. Y. Ohara, \(L^\infty\)-estimates of solutions of some nonlinear degenerate parabolic equations, Nonlinear Anal. 18 (1992), no. 5, 413-426. https://doi.org/10.1016/0362-546X(92)90010-C
  13. J.L. Vázquez, The Porous Medium Equation, Oxford University Press, 2007.
  14. L. Véron, Coercivité et propriétés régularisantes des semi-groupes non-linéaires dans les espaces de Banach, Faculte des Sciences et Techniques, Université Francois Rabelais, Tours, France, 1976.
  • Mitsuhiro Nakao
  • Faculty of Mathematics, Kyushu University, Moto-oka 819-1602, Fukuoka, Japan
  • Communicated by J.I. Díaz.
  • Received: 2022-12-07.
  • Revised: 2023-05-05.
  • Accepted: 2023-05-09.
  • Published online: 2023-06-24.
Opuscula Mathematica - cover

Cite this article as:
Mitsuhiro Nakao, Existence and smoothing effects of the initial-boundary value problem for \(\partial u/\partial t-\Delta\sigma(u)=0\) in time-dependent domains, Opuscula Math. 43, no. 5 (2023), 703-734, https://doi.org/10.7494/OpMath.2023.43.5.703

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.