Opuscula Math. 43, no. 5 (2023), 703-734
https://doi.org/10.7494/OpMath.2023.43.5.703
Opuscula Mathematica
Existence and smoothing effects of the initial-boundary value problem for \(\partial u/\partial t-\Delta\sigma(u)=0\) in time-dependent domains
Abstract. We show the existence, smoothing effects and decay properties of solutions to the initial-boundary value problem for a generalized porous medium type parabolic equations of the form \[u_t-\Delta \sigma(u) =0 \quad \text{in } Q(0, T)\] with the initial and boundary conditions \[u(0)=u_0 \quad \text{and} \quad u(t)|_{\partial \Omega(t)}=0,\] where \(\Omega(t)\) is a bounded domain in \(R^N\) for each \(t \geq 0\) and \[Q(0,T)=\bigcup_{0 \lt t \lt T} \Omega(t) \times \{t\}, \quad T>0.\] Our class of \(\sigma(u)\) includes \(\sigma(u)=|u|^m u\), \(\sigma(u)=u \log (1+ |u|^m)\), \(0\leq m \leq 2\), and \(\sigma(u)=|u|^{m}u/\sqrt{1+|u|^2}\), \(1 \leq m \leq 2\), etc. We derive precise estimates for \(\|u(t)\|_{\Omega(t),\infty}\) and \(\|\nabla\sigma(u(t))\|^2_{\Omega(t),2}\), \(t\gt 0\), depending on \(\|u_0\|_{\Omega(0),r}\) and the movement of \(\partial\Omega(t)\).
Keywords: quasilinear parabolic equation, time-dependent domain, smoothing effects.
Mathematics Subject Classification: 35B40, 35K92.
- N.D. Alikakos, R. Rostamian, Gradient estimates for degenerate diffusion equations. I, Math. Ann. 259 (1982), no. 1, 53-70. https://doi.org/10.1007/BF01456828
- S. Antontsev, J.I. Díaz, S. Shmarev, Energy Methods for Free Boundary Problems Applications to Nonlinear PDEs and Fluid Mechanics, Ser. Progress in Nonlinear Differential Equations and Their Applications, vol. 48, Birkhäuser, Boston, 2002.
- J. Cooper, Local decay of solutions of the wave equation in the exterior of a moving body, J. Math. Anal. Appl. 49 (1975), 130-153. https://doi.org/10.1016/0022-247X(75)90165-1
- J.I. Díaz, Mathematical analysis of some diffusive energy balance models in climatology, Mathematics, Climate and Environment, RMA Res. Notes Appl. Math., vol. 27, Masson, Paris, 1993, 28-56.
- E. DiBenedetto, Degenerate Parabolic Equations, Springer, New York, NY, 1993.
- K. Lee, A mixed problem for hyperbolic equations with time-dependent domain, J. Math. Anal. Appl. 16 (1966), 455-471. https://doi.org/10.1016/0022-247X(66)90156-9
- G.M. Lieberman, Second Order Parabolic Differential Equations, Revised ed., World Scientific, Singapore, 2005.
- M. Nakao, On solutions to the initial-boundary value problem for \(\partial u/\partial t - \Delta \beta(u)=f\), J. Math. Soc. Japan 35 (1983), no. 1, 71-83. https://doi.org/10.2969/jmsj/03510071
- M. Nakao, Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations, Nonlinear Anal. 10 (1986), no. 3, 299-314. https://doi.org/10.1016/0362-546X(86)90005-2
- M. Nakao, Smoothing effects of the initial-boundary value problem for logarithmic type quasilinear parabolic equations, J. Math. Anal. Appl. 462 (2018), no. 2, 1585-1604. https://doi.org/10.1016/j.jmaa.2018.02.061
- M. Nakao, Existence and smoothing effect of the initial-boundary value problem for quasilinear parabolic equations in time-dependent domains, submitted.
- Y. Ohara, \(L^\infty\)-estimates of solutions of some nonlinear degenerate parabolic equations, Nonlinear Anal. 18 (1992), no. 5, 413-426. https://doi.org/10.1016/0362-546X(92)90010-C
- J.L. Vázquez, The Porous Medium Equation, Oxford University Press, 2007.
- L. Véron, Coercivité et propriétés régularisantes des semi-groupes non-linéaires dans les espaces de Banach, Faculte des Sciences et Techniques, Université Francois Rabelais, Tours, France, 1976.
- Mitsuhiro Nakao
- Faculty of Mathematics, Kyushu University, Moto-oka 819-1602, Fukuoka, Japan
- Communicated by J.I. Díaz.
- Received: 2022-12-07.
- Revised: 2023-05-05.
- Accepted: 2023-05-09.
- Published online: 2023-06-24.