Opuscula Math. 43, no. 5 (2023), 689-701
https://doi.org/10.7494/OpMath.2023.43.5.689
Opuscula Mathematica
Global solutions for a nonlinear Kirchhoff type equation with viscosity
Abstract. In this paper we consider the existence and asymptotic behavior of solutions of the following nonlinear Kirchhoff type problem \[u_{tt}- M\left(\,\displaystyle \int_{\Omega}|\nabla u|^{2}\, dx\right)\triangle u - \delta\triangle u_{t}= \mu|u|^{\rho-2}u\quad \text{in } \Omega \times ]0,\infty[,\] where \[M(s)=\begin{cases}a-bs &\text{for } s \in [0,\frac{a}{b}[,\\ 0, &\text{for } s \in [\frac{a}{b}, +\infty[.\end{cases}\] If the initial energy is appropriately small, we derive the global existence theorem and its exponential decay.
Keywords: global solutions, nonlinear Kirchhoff type problem, exponential decay.
Mathematics Subject Classification: 35L80, 35L70, 35B33, 35J75.
- M. Aassila, A. Benaissa, Existence globale et comportement asymptotique des solutions des équations de Kirchhoff moyennement dégénérées avec un terme nonlinear dissipatif, Funkc. Ekvacioj, Ser. Int. 44 (2001), no. 2, 309-333.
- F.D. Araruna, A.L.A. Araujo, A.T. Lourêdo, Decay of solution for degenerate Kirchhoff equation with general nonlinearity, Math. Methods Appl. Sci. 43 (2020), no. 5, 2695-2708. https://doi.org/10.1002/mma.6076
- F.D. Araruna, F.O. Matias, M.L. Oliveira, S.M.S. Souza, Well-posedness and asymptotic behavior for a nonlinear wave equation, Recent Advances in PDEs: Analysis, Numerics and Control, vol. 17, Springer, 2018, 17-32.
- A. Benaissa, L. Rahmani, Global existence and energy decay of solutions for Kirchhoff-Carrier equations with weakly nonlinear dissipation, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), no. 4, 17-26. https://doi.org/10.36045/bbms/1102689121
- S. Bernstein, Sur une classe d'equations fonctionelles aux derivees partielles, Izv. Akad. Nauk SSSR Ser. Mat. 4 (1940), 17-26.
- H. Brezis, P. Mironescu, Gagliardo-Nirenberg inequalities and non-inequalities: the full story, Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 5, 1355-1376. https://doi.org/10.1016/J.ANIHPC.2017.11.007
- M.M. Cavalcanti, V.N. Cavalcanti, J.A. Soriano, J.S. Prates Filho, Existence and asymptotic behaviour for a degenerate Kirchhoff-Carrier model with viscosity and nonlinear boundary conditions, Rev. Mat. Complut. 14 (2001), no. 1, 177-203. https://doi.org/10.5209/rev_REMA.2001.v14.n1.17054
- S.M.S. Cordeiro, D.C. Pereira, J. Ferreira, C.A. Raposo, Global solutions and exponential decay to a Klein-Gordon equation of Kirchhoff-Carrier type with strong damping and nonlinear logarithmic source term, Partial Differential Equations in Applied Mathematics 3 (2021), 100018. https://doi.org/10.1016/j.padiff.2020.100018
- P. D'Ancona, S. Spagnolo, A class of nonlinear hyperbolic problems with global solutions, Arch. Rational Mech. Anal. 124 (1992), no. 3, 201-219. https://doi.org/10.1007/BF00953066
- G.M. Figueiredo, C. Morales-Rodrigo, J.R. Santos Júnior, A. Suárez, Study of a nonlinear Kirchhoff equation with non-homogeneous material, J. Math. Anal. Appl. 416 (2014), no. 2, 597-608. https://doi.org/10.1016/j.jmaa.2014.02.067
- M. Ghisi, M. Gobbino, Global existence and asymptotic behaviour for a mildly degenerate dissipative hyperbolic equation of Kirchhoff type, Asymptot. Anal. 40 (2004), no. 1, 25-36.
- D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983.
- J.H. Greenberg, S.C. Hu, The initial value problem for a stretched string, Quart. Appl. Math. 38 (1980), no. 3, 289-311. https://doi.org/10.1090/qam/592197
- J. Hadamard, Le problèmes de Cauchy et les equations aux derivées partielles lineaires hiperboliques, Paris, Hermann, 1932.
- M.K. Hamdani, N.T. Chung, D.D. Repovš, New class of sixth-order nonhomogeneous \(p(x)\)-Kirchhoff problems with sign-changing weight functions, Adv. Nonlinear Anal. 10 (2021), 1117-1131. https://doi.org/10.1515/anona-2020-0172
- G. Kirchhoff, Vorlesungen über Mechanik, Leipzig, Teubner, 1883.
- J.L. Lions, On some questions in boundary value problems of mathematical physics, [in:] Proceedings of the International Symposium on Continuum Mechanics and Partial Differential Equations, North Holland, Amsterdam, The Netherlands, 1978.
- X. Lin, F. Li, Global existence and decay estimates for nonlinear Kirchhoff-type equation with boundary dissipation, Differ. Equ. Appl. 5 (2013), no. 2, 297-317 https://doi.org/10.7153/dea-05-18
- G. Lin, Y. Gao, Y. Sun, On local existence and blow-up of solutions for nonlinear wave equations of higher-order Kirchhoff type with strong dissipation, Internat. J. Modern Nonlinear Theory Appl. 6 (2017), 11-25. https://doi.org/10.4236/ijmnta.2017.61002
- J.L. Lions, Some Remarks on the Optimal Control on Singular Distributed Systems, INRIA, France, 1984.
- M.P. Matos, D. Pereira, On a hyperbolic equation with strong dissipation, Funkc. Ekvacioj 34 (1991), 303-331.
- L.A. Medeiros, J. Limaco, S.B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part one, J. Comput. Anal. Appl. 4 (2002), 91-127. https://doi.org/10.1023/A:1012934900316
- L.A. Medeiros, M. Milla Miranda, On a nonlinear wave equation with damping, Rev. Math. Univ. Complut. Madrid 13 (1990), 213-231.
- M. Milla Miranda, A.T. Louredo, L.A. Medeiros, Nonlinear perturbations of the Kirchhoff equation, Electron J. Differential Equations 2017, Paper no. 77, 21 pp.
- S. Mimouni, A. Benaissa, N.E. Amroun, Global existence and optimal decay rate of solutions for the degenerate quasilinear wave equation with a strong dissipation, Appl. Anal. 89 (2010), no. 6, 815-831. https://doi.org/10.1080/00036811003649090
- T. Mizumachi, The asymptotic behavior of solutions to the Kirchhoff equation with a viscous damping term, J. Dynam. Differential Equations 9 (1997), no. 2, 211-247. https://doi.org/10.1007/BF02219221
- M. Nakao, Asymptotic stability of the bounded or almost periodic solution of the wave equation with nonlinear dissipative term, J. Math. Anal. Appl. 58 (1977), no. 2, 336-343. https://doi.org/10.1016/0022-247X(77)90211-6
- K. Nishihara, Degenerate quasilinear hyperbolic equation with strong damping, Funkc. Ekvacioj 27 (1984), 125-145.
- K. Ono, On global existence, asymptotic stability and blowing up of solutions for degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci. 20 (1997), 151-177. https://doi.org/10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0
- K. Ono, On decay properties of solutions for degenerate strongly damped wave equations of Kirchhoff type, J. Math. Anal. Appl. 381 (2011), no. 1, 229-239. https://doi.org/10.1016/j.jmaa.2011.03.034
- K. Ono, Global existence and decay properties of solutions for coupled degenerate dissipative hyperbolic systems of Kirchhoff type, Funkc. Ekvacioj 57 (2014), 319-337.
- D.C. Pereira, C.A. Raposo, Global weak solution, uniqueness and exponential decay for a class of degenerate hyperbolic equation, Comm. Adv. Math. Sci. 5 (2022), no. 3, 137-149. https://doi.org/10.33434/cams.1012330
- S.I. Pohožaev, On a class of quasilinear hyperbolic equations, Math. USSR Sb. 25 (1975), 93-104. https://doi.org/10.1070/SM1975v025n01ABEH002203
- P. Pucci, V.D. Rădulescu, Progress in nonlinear Kirchhoff problems, Nonlinear Anal. 186 (2019), 1-5. https://doi.org/10.1016/j.na.2019.02.022
- X. Qian, Multiplicity of positive solutions for a class of nonlocal problem involving critical exponent, Electron. J. Qual. Theory Differ. Equ. 2021 Paper no. 57, 14 pp.
- J.E.M. Rivera, Smoothness effect and decay on a class of nonlinear evolution equation, Ann. Fac. Sci. Toulouse Math. 1 (1992), no. 2, 237-260.
- L. Tartar, Topics in Nonlinear Analysis, Publications Mathématiques d'Orsay, Uni. Paris Sud. Dep. Math., Orsay, France, 1978.
- C.F. Vasconcellos, L.M. Teixeira, Strong solution and exponential decay for a nonlinear hyperbolic equation, Appl. Anal. 55 (1993), 155-173. https://doi.org/10.1080/00036819308840209
- Y. Wang, X. Yang, Infinitely many solutions for a new Kirchhoff-type equation with subcritical exponent, Appl. Anal. 101 (2022), no. 3, 1038-1051. https://doi.org/10.1080/00036811.2020.1767288
- S.T. Wu, On decay properties of solutions for degenerate Kirchhoff equations with strong damping and source terms, Boundary Value Prob. 2012 (2012), Article no. 93. https://doi.org/10.1186/1687-2770-2012-93
- S.T. Wu, L.Y. Tsai, On the existence and nonexistence of solutions for some nonlinear wave equations of Kirchhoff type, Taiwanese J. Math. 14 (2010), no. 4, 1543-1570. https://doi.org/10.11650/twjm/1500405967
- Y. Yang, J. Li, T. Yu, The qualitative analysis of solutions for a class of Kirchhoff equation with linear strong damping term, nonlinear weak damping term and power-type logarithmic source term, Appl. Numer. Math. 141 (2019), 263-285. https://doi.org/10.1016/j.apnum.2019.01.002
- Y. Ye, On the exponential decay of solutions for some Kirchhoff-type modelling equations with strong dissipation, Appl. Math. 1 (2010), no. 6, 529-533. https://doi.org/10.4236/am.2010.16070
- G.S. Yin, J.S. Liu, Existence and multiplicity of nontrivial solutions for a nonlocal problem, Bound. Value Probl. 2015 (2015), Article no. 16. https://doi.org/10.1186/s13661-015-0284-x
- Eugenio Cabanillas Lapa
https://orcid.org/0000-0002-8941-4394
- Instituto de Investigación, FCM-UNMSM, Av. Venezuela S/N, Lima, Perú
- Communicated by Giovany Figueiredo.
- Received: 2023-02-17.
- Revised: 2023-05-07.
- Accepted: 2023-05-10.
- Published online: 2023-06-24.