Opuscula Math. 43, no. 5 (2023), 689-701
https://doi.org/10.7494/OpMath.2023.43.5.689

 
Opuscula Mathematica

Global solutions for a nonlinear Kirchhoff type equation with viscosity

Eugenio Cabanillas Lapa

Abstract. In this paper we consider the existence and asymptotic behavior of solutions of the following nonlinear Kirchhoff type problem \[u_{tt}- M\left(\,\displaystyle \int_{\Omega}|\nabla u|^{2}\, dx\right)\triangle u - \delta\triangle u_{t}= \mu|u|^{\rho-2}u\quad \text{in } \Omega \times ]0,\infty[,\] where \[M(s)=\begin{cases}a-bs &\text{for } s \in [0,\frac{a}{b}[,\\ 0, &\text{for } s \in [\frac{a}{b}, +\infty[.\end{cases}\] If the initial energy is appropriately small, we derive the global existence theorem and its exponential decay.

Keywords: global solutions, nonlinear Kirchhoff type problem, exponential decay.

Mathematics Subject Classification: 35L80, 35L70, 35B33, 35J75.

Full text (pdf)

  1. M. Aassila, A. Benaissa, Existence globale et comportement asymptotique des solutions des équations de Kirchhoff moyennement dégénérées avec un terme nonlinear dissipatif, Funkc. Ekvacioj, Ser. Int. 44 (2001), no. 2, 309-333.
  2. F.D. Araruna, A.L.A. Araujo, A.T. Lourêdo, Decay of solution for degenerate Kirchhoff equation with general nonlinearity, Math. Methods Appl. Sci. 43 (2020), no. 5, 2695-2708. https://doi.org/10.1002/mma.6076
  3. F.D. Araruna, F.O. Matias, M.L. Oliveira, S.M.S. Souza, Well-posedness and asymptotic behavior for a nonlinear wave equation, Recent Advances in PDEs: Analysis, Numerics and Control, vol. 17, Springer, 2018, 17-32.
  4. A. Benaissa, L. Rahmani, Global existence and energy decay of solutions for Kirchhoff-Carrier equations with weakly nonlinear dissipation, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), no. 4, 17-26. https://doi.org/10.36045/bbms/1102689121
  5. S. Bernstein, Sur une classe d'equations fonctionelles aux derivees partielles, Izv. Akad. Nauk SSSR Ser. Mat. 4 (1940), 17-26.
  6. H. Brezis, P. Mironescu, Gagliardo-Nirenberg inequalities and non-inequalities: the full story, Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 5, 1355-1376. https://doi.org/10.1016/J.ANIHPC.2017.11.007
  7. M.M. Cavalcanti, V.N. Cavalcanti, J.A. Soriano, J.S. Prates Filho, Existence and asymptotic behaviour for a degenerate Kirchhoff-Carrier model with viscosity and nonlinear boundary conditions, Rev. Mat. Complut. 14 (2001), no. 1, 177-203. https://doi.org/10.5209/rev_REMA.2001.v14.n1.17054
  8. S.M.S. Cordeiro, D.C. Pereira, J. Ferreira, C.A. Raposo, Global solutions and exponential decay to a Klein-Gordon equation of Kirchhoff-Carrier type with strong damping and nonlinear logarithmic source term, Partial Differential Equations in Applied Mathematics 3 (2021), 100018. https://doi.org/10.1016/j.padiff.2020.100018
  9. P. D'Ancona, S. Spagnolo, A class of nonlinear hyperbolic problems with global solutions, Arch. Rational Mech. Anal. 124 (1992), no. 3, 201-219. https://doi.org/10.1007/BF00953066
  10. G.M. Figueiredo, C. Morales-Rodrigo, J.R. Santos Júnior, A. Suárez, Study of a nonlinear Kirchhoff equation with non-homogeneous material, J. Math. Anal. Appl. 416 (2014), no. 2, 597-608. https://doi.org/10.1016/j.jmaa.2014.02.067
  11. M. Ghisi, M. Gobbino, Global existence and asymptotic behaviour for a mildly degenerate dissipative hyperbolic equation of Kirchhoff type, Asymptot. Anal. 40 (2004), no. 1, 25-36.
  12. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983.
  13. J.H. Greenberg, S.C. Hu, The initial value problem for a stretched string, Quart. Appl. Math. 38 (1980), no. 3, 289-311. https://doi.org/10.1090/qam/592197
  14. J. Hadamard, Le problèmes de Cauchy et les equations aux derivées partielles lineaires hiperboliques, Paris, Hermann, 1932.
  15. M.K. Hamdani, N.T. Chung, D.D. Repovš, New class of sixth-order nonhomogeneous \(p(x)\)-Kirchhoff problems with sign-changing weight functions, Adv. Nonlinear Anal. 10 (2021), 1117-1131. https://doi.org/10.1515/anona-2020-0172
  16. G. Kirchhoff, Vorlesungen über Mechanik, Leipzig, Teubner, 1883.
  17. J.L. Lions, On some questions in boundary value problems of mathematical physics, [in:] Proceedings of the International Symposium on Continuum Mechanics and Partial Differential Equations, North Holland, Amsterdam, The Netherlands, 1978.
  18. X. Lin, F. Li, Global existence and decay estimates for nonlinear Kirchhoff-type equation with boundary dissipation, Differ. Equ. Appl. 5 (2013), no. 2, 297-317 https://doi.org/10.7153/dea-05-18
  19. G. Lin, Y. Gao, Y. Sun, On local existence and blow-up of solutions for nonlinear wave equations of higher-order Kirchhoff type with strong dissipation, Internat. J. Modern Nonlinear Theory Appl. 6 (2017), 11-25. https://doi.org/10.4236/ijmnta.2017.61002
  20. J.L. Lions, Some Remarks on the Optimal Control on Singular Distributed Systems, INRIA, France, 1984.
  21. M.P. Matos, D. Pereira, On a hyperbolic equation with strong dissipation, Funkc. Ekvacioj 34 (1991), 303-331.
  22. L.A. Medeiros, J. Limaco, S.B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part one, J. Comput. Anal. Appl. 4 (2002), 91-127. https://doi.org/10.1023/A:1012934900316
  23. L.A. Medeiros, M. Milla Miranda, On a nonlinear wave equation with damping, Rev. Math. Univ. Complut. Madrid 13 (1990), 213-231.
  24. M. Milla Miranda, A.T. Louredo, L.A. Medeiros, Nonlinear perturbations of the Kirchhoff equation, Electron J. Differential Equations 2017, Paper no. 77, 21 pp.
  25. S. Mimouni, A. Benaissa, N.E. Amroun, Global existence and optimal decay rate of solutions for the degenerate quasilinear wave equation with a strong dissipation, Appl. Anal. 89 (2010), no. 6, 815-831. https://doi.org/10.1080/00036811003649090
  26. T. Mizumachi, The asymptotic behavior of solutions to the Kirchhoff equation with a viscous damping term, J. Dynam. Differential Equations 9 (1997), no. 2, 211-247. https://doi.org/10.1007/BF02219221
  27. M. Nakao, Asymptotic stability of the bounded or almost periodic solution of the wave equation with nonlinear dissipative term, J. Math. Anal. Appl. 58 (1977), no. 2, 336-343. https://doi.org/10.1016/0022-247X(77)90211-6
  28. K. Nishihara, Degenerate quasilinear hyperbolic equation with strong damping, Funkc. Ekvacioj 27 (1984), 125-145.
  29. K. Ono, On global existence, asymptotic stability and blowing up of solutions for degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci. 20 (1997), 151-177. https://doi.org/10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0
  30. K. Ono, On decay properties of solutions for degenerate strongly damped wave equations of Kirchhoff type, J. Math. Anal. Appl. 381 (2011), no. 1, 229-239. https://doi.org/10.1016/j.jmaa.2011.03.034
  31. K. Ono, Global existence and decay properties of solutions for coupled degenerate dissipative hyperbolic systems of Kirchhoff type, Funkc. Ekvacioj 57 (2014), 319-337.
  32. D.C. Pereira, C.A. Raposo, Global weak solution, uniqueness and exponential decay for a class of degenerate hyperbolic equation, Comm. Adv. Math. Sci. 5 (2022), no. 3, 137-149. https://doi.org/10.33434/cams.1012330
  33. S.I. Pohožaev, On a class of quasilinear hyperbolic equations, Math. USSR Sb. 25 (1975), 93-104. https://doi.org/10.1070/SM1975v025n01ABEH002203
  34. P. Pucci, V.D. Rădulescu, Progress in nonlinear Kirchhoff problems, Nonlinear Anal. 186 (2019), 1-5. https://doi.org/10.1016/j.na.2019.02.022
  35. X. Qian, Multiplicity of positive solutions for a class of nonlocal problem involving critical exponent, Electron. J. Qual. Theory Differ. Equ. 2021 Paper no. 57, 14 pp.
  36. J.E.M. Rivera, Smoothness effect and decay on a class of nonlinear evolution equation, Ann. Fac. Sci. Toulouse Math. 1 (1992), no. 2, 237-260.
  37. L. Tartar, Topics in Nonlinear Analysis, Publications Mathématiques d'Orsay, Uni. Paris Sud. Dep. Math., Orsay, France, 1978.
  38. C.F. Vasconcellos, L.M. Teixeira, Strong solution and exponential decay for a nonlinear hyperbolic equation, Appl. Anal. 55 (1993), 155-173. https://doi.org/10.1080/00036819308840209
  39. Y. Wang, X. Yang, Infinitely many solutions for a new Kirchhoff-type equation with subcritical exponent, Appl. Anal. 101 (2022), no. 3, 1038-1051. https://doi.org/10.1080/00036811.2020.1767288
  40. S.T. Wu, On decay properties of solutions for degenerate Kirchhoff equations with strong damping and source terms, Boundary Value Prob. 2012 (2012), Article no. 93. https://doi.org/10.1186/1687-2770-2012-93
  41. S.T. Wu, L.Y. Tsai, On the existence and nonexistence of solutions for some nonlinear wave equations of Kirchhoff type, Taiwanese J. Math. 14 (2010), no. 4, 1543-1570. https://doi.org/10.11650/twjm/1500405967
  42. Y. Yang, J. Li, T. Yu, The qualitative analysis of solutions for a class of Kirchhoff equation with linear strong damping term, nonlinear weak damping term and power-type logarithmic source term, Appl. Numer. Math. 141 (2019), 263-285. https://doi.org/10.1016/j.apnum.2019.01.002
  43. Y. Ye, On the exponential decay of solutions for some Kirchhoff-type modelling equations with strong dissipation, Appl. Math. 1 (2010), no. 6, 529-533. https://doi.org/10.4236/am.2010.16070
  44. G.S. Yin, J.S. Liu, Existence and multiplicity of nontrivial solutions for a nonlocal problem, Bound. Value Probl. 2015 (2015), Article no. 16. https://doi.org/10.1186/s13661-015-0284-x
  • Communicated by Giovany Figueiredo.
  • Received: 2023-02-17.
  • Revised: 2023-05-07.
  • Accepted: 2023-05-10.
  • Published online: 2023-06-24.
Opuscula Mathematica - cover

Cite this article as:
Eugenio Cabanillas Lapa, Global solutions for a nonlinear Kirchhoff type equation with viscosity, Opuscula Math. 43, no. 5 (2023), 689-701, https://doi.org/10.7494/OpMath.2023.43.5.689

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.