Opuscula Math. 43, no. 5 (2023), 675-687
https://doi.org/10.7494/OpMath.2023.43.5.675

 
Opuscula Mathematica

Radial solutions for nonlinear elliptic equation with nonlinear nonlocal boundary conditions

Igor Kossowski

Abstract. In this article, we prove existence of radial solutions for a nonlinear elliptic equation with nonlinear nonlocal boundary conditions. Our method is based on some fixed point theorem in a cone.

Keywords: nonlocal boundary value problem, radial solutions, elliptic equation, the Krasnosielskii fixed point theorem in cone.

Mathematics Subject Classification: 34B10, 34B15, 47H11.

Full text (pdf)

  1. C. Bandle, C.V. Coffman, M. Marcus, Nonlinear elliptic problems in annular domains, J. Differential Equations 69 (1987), no. 3, 322-345. https://doi.org/10.1016/0022-0396(87)90123-9
  2. A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Anal. 70 (2009), 364-371 https://doi.org/10.1016/j.na.2007.12.007
  3. F. Cianciaruso, G. Infante, P. Pietramala, Multiple positive radial solutions for Neumann elliptic systems with gradient dependence, Math. Methods Appl. Sci. 41 (2018), 6358-6367. https://doi.org/10.1002/mma.5143
  4. W.A. Day, Extensions of a property of the heat equation to linear thermoelasticity and other theories, Quart. Appl. Math. 40 (1982), no. 3, 319-330. https://doi.org/10.1090/qam/678203
  5. W.A. Day, Heat Conduction within Linear Thermoelastacity, Springer Tracts in Natural Philosophy, vol. 30, Springer-Verlag, New York, 1982.
  6. R. Enguica, L. Sanchez, Radial solutions for a nonlocal boundary value problem, Bound. Value Probl. 2006 (2006), Article no. 32950. https://doi.org/10.1155/BVP/2006/32950
  7. P. Fijałkowski, B. Przeradzki, On a boundary value problem for a nonlocal elliptic equation, J. Appl. Anal. 9 (2003), no. 2, 201-209. https://doi.org/10.1515/JAA.2003.201
  8. P. Fijałkowski, B. Przeradzki, On a radial positive solution to a nonlocal elliptic equation, Topol. Methods Nonlinear Anal. 21 (2003), no. 2, 293-300. https://doi.org/10.12775/TMNA.2003.017
  9. A. Friedman, Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions, Quart. Appl. Math. 44 (1986), no. 3, 401-407. https://doi.org/10.1090/qam/860893
  10. X. Garaizar, Existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Differential Equations 70 (1987), no. 1, 69-92. https://doi.org/10.1016/0022-0396(87)90169-0
  11. D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Inc., Boston, 1988.
  12. G. Infante, Nonzero positive solutions of a multi-parameter elliptic system with functional BCs, Topol. Methods Nonlinear Anal. 52 (2018), 665-675. https://doi.org/10.12775/tmna.2017.060
  13. G. Infante, Nonzero positive solutions of nonlocal elliptic systems with functional BCs, J. Elliptic Parabol. Equ. 5 (2019), 493-505. https://doi.org/10.1007/s41808-019-00049-6
  14. G.L. Karakostas, P.Ch. Tsamatos, On a nonlocal boundary value problem at resonance, J. Math. Anal. Appl. 259 (2001), no. 1, 209-218. https://doi.org/10.1006/jmaa.2000.7411
  15. G.L. Karakostas, P.Ch. Tsamatos, Sufficient conditions for the existence of nonnegative solutions of a nonlocal boundary value problem, Appl. Math. Lett. 15 (2002), 401-407. https://doi.org/10.1016/S0893-9659(01)00149-5
  16. M. Krukowski, Arzelà-Ascoli’s theorem in uniform spaces, Discrete Contin. Dyn. Syst. Ser. B (2018), no. 1, 283-294 https://doi.org/10.3934/dcdsb.2018020
  17. M. Krukowski, Arzelà-Ascoli’s theorem via the Wallman compactification, Quaest. Math. 41 (2018), no. 3, 349-357. https://doi.org/10.2989/16073606.2017.1381653
  18. S. Lin, On the existence of positive radial solutions for nonlinear elliptic equations in annular domains, J. Differential Equations 81 (1989), no. 2, 221-233. https://doi.org/10.1016/0022-0396(89)90121-6
  19. O. Nica, Initial-value problems for first-order differential systems with general nonlocal conditions, Electron. J. Differential Equations (2012), no. 74, 1-15.
  20. O. Nica, Nonlocal initial value problems for first order differential systems, Fixed Point Theory 13 (2012), no. 2, 603-612.
  21. C.V. Pao, Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions, J. Comput. Appl. Math. 88 (1998), no. 1, 225-238. https://doi.org/10.1016/S0377-0427(97)00215-X
  22. R. Stańczy, Decaying solutions for semilinear elliptic equations in exterior domains, Topol. Methods Nonlinear Anal. 14 (1999), no. 2, 363-370. https://doi.org/10.12775/TMNA.1999.039
  23. R. Stańczy, Bounded solutions for nonlinear elliptic equations in unbounded domains, J. Appl. Anal. 6 (2000), no. 1, 129-138. https://doi.org/10.1515/JAA.2000.129
  24. R. Stańczy, Positive solutions for superlinear elliptic equations, J. Math. Anal. Appl. 283 (2003), no. 1, 159-166. https://doi.org/10.1016/S0022-247X(03)00265-8
  25. K. Szymańska-Dębowska, On two systems of non-resonant nonlocal boundary value problems, An. Stiint. Univ. Ovidius Constanta Ser. Mat. 21 (2013), no. 3, 257-267. https://doi.org/10.2478/auom-2013-0057
  26. K. Szymańska-Dębowska, J. Mawhin, Convex sets and second order systems with nonlocal boundary conditions at resonance, Proc. Amer. Math. Soc. 145 (2017), no. 5, 2023-2032. https://doi.org/10.1090/proc/13569
  27. K. Szymańska-Dębowska, J. Mawhin, Convex sets, fixed points and first order systems with nonlocal boundary conditions at resonance, J. Nonlinear Convex Anal. 18 (2017), no. 1, 149-160.
  28. K. Szymańska-Dębowska, J. Mawhin, Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions, Math. Bohem. 141 (2016), no. 2, 239-259. https://doi.org/10.21136/MB.2016.17
  29. J.R.L. Webb, Remarks on nonlocal boundary value problems at resonance, Appl. Math. Comput. 216 (2010), no. 2, 497-500. https://doi.org/10.1016/j.amc.2010.01.056
  30. W.M. Whyburn, Differential equations with general boundary conditions, Bull. Amer. Math. Soc. 48 (1942), no. 10, 692-704. https://doi.org/10.1090/S0002-9904-1942-07760-3
  • Communicated by P.A. Cojuhari.
  • Received: 2023-04-21.
  • Accepted: 2023-05-14.
  • Published online: 2023-06-24.
Opuscula Mathematica - cover

Cite this article as:
Igor Kossowski, Radial solutions for nonlinear elliptic equation with nonlinear nonlocal boundary conditions, Opuscula Math. 43, no. 5 (2023), 675-687, https://doi.org/10.7494/OpMath.2023.43.5.675

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.