Opuscula Math. 43, no. 5 (2023), 675-687
https://doi.org/10.7494/OpMath.2023.43.5.675
Opuscula Mathematica
Radial solutions for nonlinear elliptic equation with nonlinear nonlocal boundary conditions
Abstract. In this article, we prove existence of radial solutions for a nonlinear elliptic equation with nonlinear nonlocal boundary conditions. Our method is based on some fixed point theorem in a cone.
Keywords: nonlocal boundary value problem, radial solutions, elliptic equation, the Krasnosielskii fixed point theorem in cone.
Mathematics Subject Classification: 34B10, 34B15, 47H11.
- C. Bandle, C.V. Coffman, M. Marcus, Nonlinear elliptic problems in annular domains, J. Differential Equations 69 (1987), no. 3, 322-345. https://doi.org/10.1016/0022-0396(87)90123-9
- A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Anal. 70 (2009), 364-371 https://doi.org/10.1016/j.na.2007.12.007
- F. Cianciaruso, G. Infante, P. Pietramala, Multiple positive radial solutions for Neumann elliptic systems with gradient dependence, Math. Methods Appl. Sci. 41 (2018), 6358-6367. https://doi.org/10.1002/mma.5143
- W.A. Day, Extensions of a property of the heat equation to linear thermoelasticity and other theories, Quart. Appl. Math. 40 (1982), no. 3, 319-330. https://doi.org/10.1090/qam/678203
- W.A. Day, Heat Conduction within Linear Thermoelastacity, Springer Tracts in Natural Philosophy, vol. 30, Springer-Verlag, New York, 1982.
- R. Enguica, L. Sanchez, Radial solutions for a nonlocal boundary value problem, Bound. Value Probl. 2006 (2006), Article no. 32950. https://doi.org/10.1155/BVP/2006/32950
- P. Fijałkowski, B. Przeradzki, On a boundary value problem for a nonlocal elliptic equation, J. Appl. Anal. 9 (2003), no. 2, 201-209. https://doi.org/10.1515/JAA.2003.201
- P. Fijałkowski, B. Przeradzki, On a radial positive solution to a nonlocal elliptic equation, Topol. Methods Nonlinear Anal. 21 (2003), no. 2, 293-300. https://doi.org/10.12775/TMNA.2003.017
- A. Friedman, Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions, Quart. Appl. Math. 44 (1986), no. 3, 401-407. https://doi.org/10.1090/qam/860893
- X. Garaizar, Existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Differential Equations 70 (1987), no. 1, 69-92. https://doi.org/10.1016/0022-0396(87)90169-0
- D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Inc., Boston, 1988.
- G. Infante, Nonzero positive solutions of a multi-parameter elliptic system with functional BCs, Topol. Methods Nonlinear Anal. 52 (2018), 665-675. https://doi.org/10.12775/tmna.2017.060
- G. Infante, Nonzero positive solutions of nonlocal elliptic systems with functional BCs, J. Elliptic Parabol. Equ. 5 (2019), 493-505. https://doi.org/10.1007/s41808-019-00049-6
- G.L. Karakostas, P.Ch. Tsamatos, On a nonlocal boundary value problem at resonance, J. Math. Anal. Appl. 259 (2001), no. 1, 209-218. https://doi.org/10.1006/jmaa.2000.7411
- G.L. Karakostas, P.Ch. Tsamatos, Sufficient conditions for the existence of nonnegative solutions of a nonlocal boundary value problem, Appl. Math. Lett. 15 (2002), 401-407. https://doi.org/10.1016/S0893-9659(01)00149-5
- M. Krukowski, Arzelà-Ascoli’s theorem in uniform spaces, Discrete Contin. Dyn. Syst. Ser. B (2018), no. 1, 283-294 https://doi.org/10.3934/dcdsb.2018020
- M. Krukowski, Arzelà-Ascoli’s theorem via the Wallman compactification, Quaest. Math. 41 (2018), no. 3, 349-357. https://doi.org/10.2989/16073606.2017.1381653
- S. Lin, On the existence of positive radial solutions for nonlinear elliptic equations in annular domains, J. Differential Equations 81 (1989), no. 2, 221-233. https://doi.org/10.1016/0022-0396(89)90121-6
- O. Nica, Initial-value problems for first-order differential systems with general nonlocal conditions, Electron. J. Differential Equations (2012), no. 74, 1-15.
- O. Nica, Nonlocal initial value problems for first order differential systems, Fixed Point Theory 13 (2012), no. 2, 603-612.
- C.V. Pao, Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions, J. Comput. Appl. Math. 88 (1998), no. 1, 225-238. https://doi.org/10.1016/S0377-0427(97)00215-X
- R. Stańczy, Decaying solutions for semilinear elliptic equations in exterior domains, Topol. Methods Nonlinear Anal. 14 (1999), no. 2, 363-370. https://doi.org/10.12775/TMNA.1999.039
- R. Stańczy, Bounded solutions for nonlinear elliptic equations in unbounded domains, J. Appl. Anal. 6 (2000), no. 1, 129-138. https://doi.org/10.1515/JAA.2000.129
- R. Stańczy, Positive solutions for superlinear elliptic equations, J. Math. Anal. Appl. 283 (2003), no. 1, 159-166. https://doi.org/10.1016/S0022-247X(03)00265-8
- K. Szymańska-Dębowska, On two systems of non-resonant nonlocal boundary value problems, An. Stiint. Univ. Ovidius Constanta Ser. Mat. 21 (2013), no. 3, 257-267. https://doi.org/10.2478/auom-2013-0057
- K. Szymańska-Dębowska, J. Mawhin, Convex sets and second order systems with nonlocal boundary conditions at resonance, Proc. Amer. Math. Soc. 145 (2017), no. 5, 2023-2032. https://doi.org/10.1090/proc/13569
- K. Szymańska-Dębowska, J. Mawhin, Convex sets, fixed points and first order systems with nonlocal boundary conditions at resonance, J. Nonlinear Convex Anal. 18 (2017), no. 1, 149-160.
- K. Szymańska-Dębowska, J. Mawhin, Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions, Math. Bohem. 141 (2016), no. 2, 239-259. https://doi.org/10.21136/MB.2016.17
- J.R.L. Webb, Remarks on nonlocal boundary value problems at resonance, Appl. Math. Comput. 216 (2010), no. 2, 497-500. https://doi.org/10.1016/j.amc.2010.01.056
- W.M. Whyburn, Differential equations with general boundary conditions, Bull. Amer. Math. Soc. 48 (1942), no. 10, 692-704. https://doi.org/10.1090/S0002-9904-1942-07760-3
- Igor Kossowski
https://orcid.org/0000-0002-1314-5562
- Lodz University of Technology, Institute of Mathematics, al. Politechniki 8, 93-590 Łódź, Poland
- Communicated by P.A. Cojuhari.
- Received: 2023-04-21.
- Accepted: 2023-05-14.
- Published online: 2023-06-24.