Opuscula Math. 43, no. 5 (2023), 651-661
https://doi.org/10.7494/OpMath.2023.43.5.651

 
Opuscula Mathematica

One boundary value problem including a spectral parameter in all boundary conditions

Ayşe Kabataş

Abstract. In this paper, asymptotic formulae for solutions and Green's function of a boundary value problem are investigated when the equation and the boundary conditions contain a spectral parameter.

Keywords: boundary value problems, asymptotics, Green's functions.

Mathematics Subject Classification: 34B08, 34B27, 34L10.

Full text (pdf)

  1. K. Aydemir, Boundary value problems with eigenvalue-dependent boundary and transmission condition, Bound. Value Probl. 2014 (2014), Article no. 131. https://doi.org/10.1186/1687-2770-2014-131
  2. E. Başkaya, Asymptotics of eigenvalues for Sturm-Liouville problem including eigenparameter-dependent boundary conditions with integrable potential, NTMSCI 6 (2018), 39-47. https://doi.org/10.20852/ntmsci.2018.292
  3. E. Başkaya, Asymptotics of eigenvalues for Sturm-Liouville problem including quadratic eigenvalue in the boundary condition, NTMSCI 6 (2018), 76-82. https://doi.org/10.20852/ntmsci.2018.296
  4. E. Başkaya, Asymptotics of eigenvalues for Sturm-Liouville problem with eigenparameter dependent-boundary conditions, NTMSCI 6 (2018), 247-257. https://doi.org/10.20852/ntmsci.2018.288
  5. E. Başkaya, Periodic and semi-periodic eigenvalues of Hill's equation with symmetric double well potential, TWMS J. App. Eng. Math. 10 (2020), 346-352.
  6. E. Başkaya, Asymptotic eigenvalues of regular Sturm-Liouville problems with spectral parameter-dependent boundary conditions and symmetric single well potential, Turk. J. Math. Comput. Sci. 13 (2021), 44-50. https://doi.org/10.47000/tjmcs.851839
  7. E. Başkaya, On the gaps of Neumann eigenvalues for Hill's equation with symmetric double well potential, Tbillisi Math. J. 8 (2021), 139-145.
  8. P.A. Binding, P.J. Browne, B.A. Watson, Sturm-Liouville problems with reducible boundary conditions, Proc. Edinburgh Math. Soc. 49 (2006), 593-608. https://doi.org/10.1017/S0013091505000131
  9. H. Coşkun, E. Başkaya, Asymptotics of eigenvalues of regular Sturm-Liouville problems with eigenvalue parameter in the boundary condition for integrable potential, Math. Scand. 107 (2010), 209-223. https://doi.org/10.7146/math.scand.a-15152
  10. H. Coşkun, E. Başkaya, Asymptotics of eigenvalues for Sturm-Liouville problem with eigenvalue in the boundary condition for differentiable potential, APAM 16 (2018), 7-19. https://doi.org/10.22457/apam.v16n1a2
  11. H. Coşkun, E. Başkaya, A. Kabataş, Instability intervals for Hill's equation with symmetric single well potential, Ukr. Math. J. 71 (2019), 977-983. https://doi.org/10.1007/s11253-019-01692-x
  12. H. Coşkun, A. Kabataş, Asymptotic approximations of eigenfunctions for regular Sturm-Liouville problems with eigenvalue parameter in the boundary condition for integrable potential, Math. Scand. 113 (2013), 143-160.
  13. H. Coşkun, A. Kabataş, Green's function of regular Sturm-Liouville problem having eigenparameter in one boundary condition, Turkish J. Math. and Comput. Sci. 4 (2016), 1-9.
  14. H. Coşkun, A. Kabataş, E. Başkaya, On Green's function for boundary value problem with eigenvalue dependent quadratic boundary condition, Bound. Value Probl. 2017 (2017), Article no. 71. https://doi.org/10.1186/s13661-017-0802-0
  15. D.G. Duffy, Green’s Functions with Applications, Chapman Hall/CRC, New York, 2015. https://doi.org/10.1201/9781315371412
  16. C.T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), 293-308. https://doi.org/10.1017/S030821050002521X
  17. B.J. Harris, The form of the spectral functions associated with Sturm-Liouville problems with continuous spectrum, Mathematika 44 (1997), 149-161. https://doi.org/10.1112/S0025579300012043
  18. H. Hochstadt, Estimates on the stability intervals for Hill's equation, Proc. Am. Math. Soc. 14 (1963), 930-932.
  19. Ch.G. Ibadzadeh, I.M. Nabiev, Reconstruction of the Sturm-Liouville operator with nonseparated boundary conditions and a spectral parameter in the boundary condition, Ukr. Math. J. 69 (2018), 1416-1423. https://doi.org/10.1007/s11253-018-1440-0
  20. A. Kabataş, Eigenfunction and Green's function asymptotics for Hill's equation with symmetric single well potential, Ukr. Math. J. 74 (2022), 218-231. https://doi.org/10.1007/s11253-022-02059-5
  21. A. Kabataş, On eigenfunctions of Hill's equation with symmetric double well potential, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 71 (2022), 634-649. https://doi.org/10.31801/cfsuasmas.974409
  22. N.B. Kerimov, Kh.R. Mamedov, On one boundary value problem with a spectral parameter in the boundary conditions, Sib. Math. J. 40 (1999), 281-290. https://doi.org/10.1007/s11202-999-0008-5
  23. H.Y. Zhang, J.J. Ao, M.L. Li, Dependence of eigenvalues of Sturm-Liouville problems with eigenparameter-dependent boundary conditions and interface conditions, Mediterr. J. Math. 19 (2022), Article no. 90. https://doi.org/10.1007/s00009-021-01943-x
  • Communicated by Alexander Gomilko.
  • Received: 2023-01-04.
  • Revised: 2023-05-02.
  • Accepted: 2023-05-09.
  • Published online: 2023-06-24.
Opuscula Mathematica - cover

Cite this article as:
Ayşe Kabataş, One boundary value problem including a spectral parameter in all boundary conditions, Opuscula Math. 43, no. 5 (2023), 651-661, https://doi.org/10.7494/OpMath.2023.43.5.651

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.