Opuscula Math. 43, no. 5 (2023), 621-632
https://doi.org/10.7494/OpMath.2023.43.5.621

 
Opuscula Mathematica

A viability result for Carathéodory non-convex differential inclusion in Banach spaces

Nabil Charradi
Saïd Sajid

Abstract. This paper deals with the existence of solutions to the following differential inclusion: \(\dot{x}(t)\in F(t,x(t))\) a.e. on \([0, T[\) and \(x(t)\in K\), for all \(t \in [0, T]\), where \(F: [0, T]\times K \rightarrow 2^E\) is a Carathéodory multifunction and \(K\) is a closed subset of a separable Banach space \(E\).

Keywords: viability, measurable multifunction, selection, Carathéodory multifunction.

Mathematics Subject Classification: 34A60, 28B20.

Full text (pdf)

  1. M. Aitalioubrahim, On viability result for first order functional differential inclusions, Mat. Vesnik 70 (2018), no. 4, 283-291.
  2. M. Aitalioubrahim, Viability result for semilinear functional differential inclusions in Banach spaces, Carpathian Math. Publ. 13 (2021), no. 2, 395-404. https://doi.org/10.15330/cmp.13.2.395-404
  3. C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
  4. Q. Dong, G. Li, Viability for semilinear differential equations with infinite delay, Mathematics 2016, 4(4), 64. https://doi.org/10.3390/math4040064
  5. Z. Fan, G. Li, Existence results for semilinear differential inclusions, Bull. Austral. Math. Soc. 76 (2007), no. 2, 227-241. https://doi.org/10.1017/S0004972700039629
  6. T.X.D. Ha, Existence of viable solutions for nonconvex valued differential inclusions in Banach spaces, Portugal. Math. 52 (1995), Fasc. 2, 241-250.
  7. G. Haddad, Monotone trajectories for functional differential inclusions, J. Diff. Equations 42 (1981), no. 1, 1-24. https://doi.org/10.1016/0022-0396(81)90031-0
  8. G. Haddad, Monotone trajectories of differential inclusions and functional differential inclusions with memory, Israel J. Math. 39 (1981), 83-100. https://doi.org/10.1007/BF02762855
  9. M. Larrieu, Invariance d'un fermé pour un champ de vecteurs de Carathéodory, Pub. Math. de Pau, 1981.
  10. V. Lupulescu, M. Necula, Viability and local invariance for non-convex semilinear differential inclusions, Nonlinear Funct. Anal. Appl. 9 (2004), no. 3, 495-512.
  11. V. Lupulescu, M. Necula, A viability result for nonconvex semilinear functional differential inclusions, Discuss. Math. Differ. Incl. Control Optim. 25 (2005), 109-128. https://doi.org/10.7151/dmdico.1060
  12. V. Lupulescu, M. Necula, A viable result for nonconvex differential inclusions with memory, Port. Math. (N.S.) 63 (2006), no. 3, 335-349.
  13. Q.J. Zhu, On the solution set of differential inclusions in Banach space, J. Differential Equations 93 (1991), no. 2, 213-237. https://doi.org/10.1016/0022-0396(91)90011-W
  • Communicated by P.A. Cojuhari.
  • Received: 2023-03-17.
  • Revised: 2023-04-24.
  • Accepted: 2023-05-14.
  • Published online: 2023-06-24.
Opuscula Mathematica - cover

Cite this article as:
Nabil Charradi, Saïd Sajid, A viability result for Carathéodory non-convex differential inclusion in Banach spaces, Opuscula Math. 43, no. 5 (2023), 621-632, https://doi.org/10.7494/OpMath.2023.43.5.621

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.