Opuscula Math. 43, no. 5 (2023), 621-632
https://doi.org/10.7494/OpMath.2023.43.5.621
Opuscula Mathematica
A viability result for Carathéodory non-convex differential inclusion in Banach spaces
Abstract. This paper deals with the existence of solutions to the following differential inclusion: \(\dot{x}(t)\in F(t,x(t))\) a.e. on \([0, T[\) and \(x(t)\in K\), for all \(t \in [0, T]\), where \(F: [0, T]\times K \rightarrow 2^E\) is a Carathéodory multifunction and \(K\) is a closed subset of a separable Banach space \(E\).
Keywords: viability, measurable multifunction, selection, Carathéodory multifunction.
Mathematics Subject Classification: 34A60, 28B20.
- M. Aitalioubrahim, On viability result for first order functional differential inclusions, Mat. Vesnik 70 (2018), no. 4, 283-291.
- M. Aitalioubrahim, Viability result for semilinear functional differential inclusions in Banach spaces, Carpathian Math. Publ. 13 (2021), no. 2, 395-404. https://doi.org/10.15330/cmp.13.2.395-404
- C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- Q. Dong, G. Li, Viability for semilinear differential equations with infinite delay, Mathematics 2016, 4(4), 64. https://doi.org/10.3390/math4040064
- Z. Fan, G. Li, Existence results for semilinear differential inclusions, Bull. Austral. Math. Soc. 76 (2007), no. 2, 227-241. https://doi.org/10.1017/S0004972700039629
- T.X.D. Ha, Existence of viable solutions for nonconvex valued differential inclusions in Banach spaces, Portugal. Math. 52 (1995), Fasc. 2, 241-250.
- G. Haddad, Monotone trajectories for functional differential inclusions, J. Diff. Equations 42 (1981), no. 1, 1-24. https://doi.org/10.1016/0022-0396(81)90031-0
- G. Haddad, Monotone trajectories of differential inclusions and functional differential inclusions with memory, Israel J. Math. 39 (1981), 83-100. https://doi.org/10.1007/BF02762855
- M. Larrieu, Invariance d'un fermé pour un champ de vecteurs de Carathéodory, Pub. Math. de Pau, 1981.
- V. Lupulescu, M. Necula, Viability and local invariance for non-convex semilinear differential inclusions, Nonlinear Funct. Anal. Appl. 9 (2004), no. 3, 495-512.
- V. Lupulescu, M. Necula, A viability result for nonconvex semilinear functional differential inclusions, Discuss. Math. Differ. Incl. Control Optim. 25 (2005), 109-128. https://doi.org/10.7151/dmdico.1060
- V. Lupulescu, M. Necula, A viable result for nonconvex differential inclusions with memory, Port. Math. (N.S.) 63 (2006), no. 3, 335-349.
- Q.J. Zhu, On the solution set of differential inclusions in Banach space, J. Differential Equations 93 (1991), no. 2, 213-237. https://doi.org/10.1016/0022-0396(91)90011-W
- Nabil Charradi
https://orcid.org/0000-0002-6382-8396
- University Hassan II of Casablanca, Department of Mathematics, FSTM, Mohammedia, 28820, Morocco
- Saïd Sajid (corresponding author)
https://orcid.org/0000-0002-4377-5928
- University Hassan II of Casablanca, Department of Mathematics, FSTM, Mohammedia, 28820, Morocco
- Communicated by P.A. Cojuhari.
- Received: 2023-03-17.
- Revised: 2023-04-24.
- Accepted: 2023-05-14.
- Published online: 2023-06-24.