Opuscula Math. 43, no. 4 (2023), 559-574
https://doi.org/10.7494/OpMath.2023.43.4.559
Opuscula Mathematica
The first eigencurve for a Neumann boundary problem involving p-Laplacian with essentially bounded weights
Ahmed Sanhaji
Ahmed Dakkak
Mimoun Moussaoui
Abstract. This article is intended to prove the existence and uniqueness of the first eigencurve, for a homogeneous Neumann problem with singular weights associated with the equation \[-\Delta_{p} u=\alpha m_{1}|u|^{p-2}u+\beta m_{2}|u|^{p-2}u\] in a bounded domain \(\Omega \subset \mathbb{R}^{N}\). We then establish many properties of this eigencurve, particularly the continuity, variational characterization, asymptotic behavior, concavity and the differentiability.
Keywords: \(p\)-Laplacian, first eigencurve, singular weight, Neumann boundary conditions.
Mathematics Subject Classification: 35J30, 35J60, 35J66.
- R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- A. Anane, A. Dakkak, Nonresonance conditions on the potential for a Neumann problem, Lecture Notes in Pure and Appl. Math., vol. 229, Dekker, New York, 2002, 85-102.
- P.A. Binding, P.J. Browne, B.A. Watson, Eigencurves of non-definite Sturm-Liouville problems for the \(p\)-Laplacian, J. Differential Equations 255 (2013), no. 9, 2751-2777. https://doi.org/10.1016/j.jde.2013.07.015
- P.A. Binding, Y.X. Huang, Bifurcation from eigencurves of the \(p\)-Laplacian, Differential Integral Equations 8 (1995), no. 2, 415-428.
- P.A. Binding, Y.X. Huang, The principal eigencurve for the \(p\)-Laplacian, Differential Integral Equations 8 (1995), no. 2, 405-414.
- A. Dakkak, M. Hadda, Eigencurves of the \(p\)-Laplacian with weights and their asymptotic behavior, Electron. J. Differential Equations 2007 (2007), no. 35, 1-7.
- A. Dakkak, M. Moussaoui, On the second eigencurve for the \(p\)-Laplacian operator with weight, Bol. Soc. Paran de Mat. (3) 35 (2017), no. 1, 281-289. https://doi.org/10.5269/bspm.v35i1.28913
- A. Derlet, J.-P. Gossez, P. Takáč, Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight, J. Math. Anal. Appl. 371 (2010), no. 1, 69-79. https://doi.org/10.1016/j.jmaa.2010.03.068
- T. Godoy, J.-P. Gossez, S. Paczka, On the antimaximum principle for the \(p\)-Laplacian with indefinite weight, Nonlinear Anal. 51 (2002), no. 3, 449-467. https://doi.org/10.1016/S0362-546X(01)00839-2
- M. Guedda, L. Veron, Bifurcation phenomena associated to the \(p\)-Laplace operator, Trans. Amer. Math. Soc. 310 (1988), no. 1, 419-431.
- Y. Lou, E. Yanagida, Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics, Japan J. Indust. Appl. Math. 23 (2006), no. 3, 275-292.
- A. Sanhaji, A. Dakkak, Nonresonance conditions on the potential for a nonlinear nonautonomous Neumann problem, Bol. Soc. Parana. Mat. (3) 38 (2020), no. 3, 79-96.
- A. Sanhaji, A. Dakkak, On the eigencurves of one dimensional \(p\)-Laplacian with weights for an elliptic Neumann problem, Rend. Circ. Mat. Palermo, II. Ser 69 (2020), no. 2, 353-367. https://doi.org/10.1007/s12215-019-00405-4
- A. Szulkin, Ljusternik-Schnirelmann theory on \(C^1\)-manifolds, Ann. Inst. H. Poincare Anal. Non Linéaire 5 (1988), no. 2, 119-139.
- Ahmed Sanhaji (corresponding author)
- Sidi Mohamed Ben Abdellah University, Polydisciplinary Faculty of Taza, Department of Mathematics, LSI Laboratory, P.O. Box 1223 Taza, 35000, Morocco
- Ahmed Dakkak
- Sidi Mohamed Ben Abdellah University, Polydisciplinary Faculty of Taza, Department of Mathematics, LSI Laboratory, P.O. Box 1223 Taza, 35000, Morocco
- Mimoun Moussaoui
- Mohamed 1 University, Faculty of Sciences of Oujda, Department of Mathematics, LANOL Laboratory, P.O. Box 717 Oujda, 60000, Morocco
- Communicated by Vicenţiu D. Rădulescu.
- Received: 2023-01-30.
- Revised: 2023-03-16.
- Accepted: 2023-03-17.
- Published online: 2023-06-13.