Opuscula Math. 43, no. 4 (2023), 559-574
https://doi.org/10.7494/OpMath.2023.43.4.559

 
Opuscula Mathematica

The first eigencurve for a Neumann boundary problem involving p-Laplacian with essentially bounded weights

Ahmed Sanhaji
Ahmed Dakkak
Mimoun Moussaoui

Abstract. This article is intended to prove the existence and uniqueness of the first eigencurve, for a homogeneous Neumann problem with singular weights associated with the equation \[-\Delta_{p} u=\alpha m_{1}|u|^{p-2}u+\beta m_{2}|u|^{p-2}u\] in a bounded domain \(\Omega \subset \mathbb{R}^{N}\). We then establish many properties of this eigencurve, particularly the continuity, variational characterization, asymptotic behavior, concavity and the differentiability.

Keywords: \(p\)-Laplacian, first eigencurve, singular weight, Neumann boundary conditions.

Mathematics Subject Classification: 35J30, 35J60, 35J66.

Full text (pdf)

  1. R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
  2. A. Anane, A. Dakkak, Nonresonance conditions on the potential for a Neumann problem, Lecture Notes in Pure and Appl. Math., vol. 229, Dekker, New York, 2002, 85-102.
  3. P.A. Binding, P.J. Browne, B.A. Watson, Eigencurves of non-definite Sturm-Liouville problems for the \(p\)-Laplacian, J. Differential Equations 255 (2013), no. 9, 2751-2777. https://doi.org/10.1016/j.jde.2013.07.015
  4. P.A. Binding, Y.X. Huang, Bifurcation from eigencurves of the \(p\)-Laplacian, Differential Integral Equations 8 (1995), no. 2, 415-428.
  5. P.A. Binding, Y.X. Huang, The principal eigencurve for the \(p\)-Laplacian, Differential Integral Equations 8 (1995), no. 2, 405-414.
  6. A. Dakkak, M. Hadda, Eigencurves of the \(p\)-Laplacian with weights and their asymptotic behavior, Electron. J. Differential Equations 2007 (2007), no. 35, 1-7.
  7. A. Dakkak, M. Moussaoui, On the second eigencurve for the \(p\)-Laplacian operator with weight, Bol. Soc. Paran de Mat. (3) 35 (2017), no. 1, 281-289. https://doi.org/10.5269/bspm.v35i1.28913
  8. A. Derlet, J.-P. Gossez, P. Takáč, Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight, J. Math. Anal. Appl. 371 (2010), no. 1, 69-79. https://doi.org/10.1016/j.jmaa.2010.03.068
  9. T. Godoy, J.-P. Gossez, S. Paczka, On the antimaximum principle for the \(p\)-Laplacian with indefinite weight, Nonlinear Anal. 51 (2002), no. 3, 449-467. https://doi.org/10.1016/S0362-546X(01)00839-2
  10. M. Guedda, L. Veron, Bifurcation phenomena associated to the \(p\)-Laplace operator, Trans. Amer. Math. Soc. 310 (1988), no. 1, 419-431.
  11. Y. Lou, E. Yanagida, Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics, Japan J. Indust. Appl. Math. 23 (2006), no. 3, 275-292.
  12. A. Sanhaji, A. Dakkak, Nonresonance conditions on the potential for a nonlinear nonautonomous Neumann problem, Bol. Soc. Parana. Mat. (3) 38 (2020), no. 3, 79-96.
  13. A. Sanhaji, A. Dakkak, On the eigencurves of one dimensional \(p\)-Laplacian with weights for an elliptic Neumann problem, Rend. Circ. Mat. Palermo, II. Ser 69 (2020), no. 2, 353-367. https://doi.org/10.1007/s12215-019-00405-4
  14. A. Szulkin, Ljusternik-Schnirelmann theory on \(C^1\)-manifolds, Ann. Inst. H. Poincare Anal. Non Linéaire 5 (1988), no. 2, 119-139.
  • Ahmed Sanhaji (corresponding author)
  • Sidi Mohamed Ben Abdellah University, Polydisciplinary Faculty of Taza, Department of Mathematics, LSI Laboratory, P.O. Box 1223 Taza, 35000, Morocco
  • Ahmed Dakkak
  • Sidi Mohamed Ben Abdellah University, Polydisciplinary Faculty of Taza, Department of Mathematics, LSI Laboratory, P.O. Box 1223 Taza, 35000, Morocco
  • Mimoun Moussaoui
  • Mohamed 1 University, Faculty of Sciences of Oujda, Department of Mathematics, LANOL Laboratory, P.O. Box 717 Oujda, 60000, Morocco
  • Communicated by Vicenţiu D. Rădulescu.
  • Received: 2023-01-30.
  • Revised: 2023-03-16.
  • Accepted: 2023-03-17.
  • Published online: 2023-06-13.
Opuscula Mathematica - cover

Cite this article as:
Ahmed Sanhaji, Ahmed Dakkak, Mimoun Moussaoui, The first eigencurve for a Neumann boundary problem involving p-Laplacian with essentially bounded weights, Opuscula Math. 43, no. 4 (2023), 559-574, https://doi.org/10.7494/OpMath.2023.43.4.559

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.