Opuscula Math. 43, no. 3 (2023), 409-428
https://doi.org/10.7494/OpMath.2023.43.3.409
Opuscula Mathematica
Existence and asymptotic stability for generalized elasticity equation with variable exponent
Abstract. In this paper we propose a new mathematical model describing the deformations of an isotropic nonlinear elastic body with variable exponent in dynamic regime. We assume that the stress tensor \(\sigma^{p(\cdot)}\) has the form \[\sigma^{p(\cdot)}(u)=(2\mu +|d(u)|^{p(\cdot)-2})d(u)+\lambda Tr(d(u)) I_{3},\] where \(u\) is the displacement field, \(\mu\), \(\lambda\) are the given coefficients \(d(\cdot)\) and \(I_{3}\) are the deformation tensor and the unit tensor, respectively. By using the Faedo-Galerkin techniques and a compactness result we prove the existence of the weak solutions, then we study the asymptotic behaviour stability of the solutions.
Keywords: asymptotic stability, variable exponent Lebesgue and Sobolev spaces, generalized elasticity equation.
Mathematics Subject Classification: 35B37, 35L55, 35L70, 46E30.
- S. Antontsev, Wave equation with \(p(x,t)\)-Laplacian and damping term: existence and blow-up, J. Difference Equ. Appl. 3 (2011), 503-525.
- S.N. Antontsev, S.I. Shmarev, Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity, J. of Math. Sciences 150 (2008), 2289-2301. https://doi.org/10.1007/s10958-008-0129-6
- M.M. Boureanu, Existence of solutions for anisotropic quasilinear elliptic equations with variable exponent, Adv. Pure Appl. Math. 1 (2010), no. 3, 387-411. https://doi.org/10.1515/apam.2010.025
- M.M. Boureanu, A. Matei, M. Sofonea, Nonlinear problems with \(p(\cdot)\)-growth conditions and applications to antiplane contact models, Advanced Nonlinear Studies 14 (2014), 295-313. https://doi.org/10.1515/ans-2014-0203
- Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383-1406. https://doi.org/10.1137/050624522
- L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin, Heidelberg, 2011.
- M. Dilmi, H. Benseridi, M. Dilmi, Asymptotic behavior for the elasticity system with a nonlinear dissipative term, Rend. Istit. Mat. Univ. Trieste 51 (2019), 41-60. https://doi.org/10.13137/2464-8728/27066
- G. Duvant, J.L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.
- X. Fan, D. Zhao, On the spaces \(L^{p(x)}(\Omega)\) and \(W^{k,p(x)}(\Omega)\), J. Math. Anal. Appl. 263 (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617
- X.L. Fan, D. Zhao, On the generalised Orlicz-Sobolev space \(W^{k,p(x)}(\Omega)\), Journal of Gansu Education College 12 (1998), no. 1, 1-6.
- M. Gaczkowski, P. Górka, D.J. Pons, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Mathematical Methods in the Applied Sciences 33 (2010), no. 2, 125-137.
- S. Ghegal, I. Hamchi, S.A. Messaoudi, Global existence and stability of a nonlinear wave equation with variable-exponent nonlinearities, Appl. Anal. 99 (2020), no. 8, 1333-1343. https://doi.org/10.1080/00036811.2018.1530760
- P. Gwiazda, F.Z. Klawe, A. Świerczewska-Gwiazda, Thermo-viscoelasticity for Norton-Hoff-type models, Nonlinear Analysis: Real World Applications 26 (2015), 199-228. https://doi.org/10.1016/j.nonrwa.2015.05.009
- V. Komornik, Exact Controllability and Stabilization: The Multiplier Method, Res. Appl. Math., vol. 36, Wiley-Masson, 1994.
- J.E. Lagnese, Uniform asymptotic energy estimates for solutions of the equations of dynamic plane elasticity with nonlinear dissipation at the boundary, Nonlinear Anal. 16 (1991), no. 1, 35-54. https://doi.org/10.1016/0362-546X(91)90129-O
- W. Lian, V.D. Rădulescu, R. Xu, Y. Yang, N. Zhao, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var. 14 (2021), no. 4, 589-611. https://doi.org/10.1515/acv-2019-0039
- L.J. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1966.
- T.F. Ma, J.A. Soriano, On weak solutions for an evolution equation with exponential nonlinearities, Nonlinear Analysis: Theory, Methods & Applications 37 (1999), 1029-1038. https://doi.org/10.1016/S0362-546X(97)00714-1
- S.A. Messaoudi, A.A. Talahmeh, A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities, Appl. Anal. 96 (2017), 1509-1515. https://doi.org/10.1080/00036811.2016.1276170
- S.A. Messaoudi, J.H. Al-Smail, A.A. Talahmeh, Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities, Comput. Math. Appl. 76 (2018), 1863-1875. https://doi.org/10.1016/j.camwa.2018.07.035
- J.T. Oden, Existence theorems for a class of problems in nonlinear elasticity, J. Math. Anal. Appl. 69 (1979), 51-83. https://doi.org/10.1016/0022-247X(79)90178-1
- S. Otmani, S. Boulaaras, A. Allahem, The maximum norm analysis of a nonmatching grids method for a class of parabolic \(p(x)\)-Laplacian equation, Boletim da Sociedade Paranaense de Matemática 40 (2022), 1-13. https://doi.org/10.5269/bspm.45218
- A. Rahmoune, On the existence, uniqueness and stability of solutions for semi-linear generalized elasticity equation with general damping term, Acta Mathematica Sinica, English Series Nov. 33 (2017), no. 11, 1549-1564. https://doi.org/10.1007/s10114-017-6466-y
- V. Rădulescu, D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Quantitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton FL, 2015.
- M. Ružicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., Springer, Berlin, 2000.
- J. Simsen, M. Simsen, P. Wittbold, Reaction-diffusion coupled inclusions with variable exponents and large diffusion, Opuscula Math. 41 (2021), no. 4, 539-570. https://doi.org/10.7494/OpMath.2021.41.4.539
- R. Stegliński, Notes on applications of the dual fountain theorem to local and nonlocal elliptic equations with variable exponent, Opuscula Math. 42 (2022), no. 5, 751-761. https://doi.org/10.7494/OpMath.2022.42.5.751
- V.V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), 67-81.
- Mohamed Dilmi (corresponding author)
https://orcid.org/0000-0003-2114-8891
- University of Blida 1, Department of Mathematics, LAMDA-RO Laboratory, PO Box 270 Route de Soumaa, Blida, Algeria
- Sadok Otmani
https://orcid.org/0000-0001-8625-6602
- University of Kasdi Merbah-Ouargla, Department of Mathematics, Ouargla, Algeria
- Communicated by P.A. Cojuhari.
- Received: 2022-02-21.
- Revised: 2023-02-24.
- Accepted: 2023-02-25.
- Published online: 2023-05-17.