Opuscula Math. 43, no. 2 (2023), 131-143
https://doi.org/10.7494/OpMath.2023.43.2.131
Opuscula Mathematica
Global attractivity of a higher order nonlinear difference equation with unimodal terms
Abdulaziz Almaslokh
Chuanxi Qian
Abstract. In the present paper, we study the asymptotic behavior of the following higher order nonlinear difference equation with unimodal terms \[x(n+1)= ax(n)+ bx(n)g(x(n)) + cx(n-k)g(x(n-k)), \quad n=0, 1, \ldots,\] where \(a\), \(b\) and \(c\) are constants with \(0\lt a\lt 1\), \(0\leq b\lt 1\), \(0\leq c \lt 1\) and \(a+b+c=1\), \(g\in C[[0, \infty), [0, \infty)]\) is decreasing, and \(k\) is a positive integer. We obtain some new sufficient conditions for the global attractivity of positive solutions of the equation. Applications to some population models are also given.
Keywords: higher order difference equation, positive equilibrium, unimodal term, global attractivity, population model.
Mathematics Subject Classification: 39A10, 92D25.
- A. Almaslokh, C. Qian, On global attractivity of a higher order difference equation and its applications, Electron. J. Qual. Theory Diff. Equ. 2022, Paper no. 2, 14 pp. https://doi.org/10.14232/ejqtde.2022.1.2
- Y. Chow, S.R.-J. Jang, N. Yeh, Dynamics of a population in two patches with dispersal, J. Difference Equ. Appl. 24 (2018), no. 4, 543-563. https://doi.org/10.1080/10236198.2018.1428962
- H.A. El-Morshedy, E. Liz, Convergence to equilibria in discrete population models, J. Difference Equ. Appl. 11 (2005), no. 2, 117-131. https://doi.org/10.1080/10236190512331319334
- J.R. Graef, C. Qian, Global stability in a nonlinear difference equation, J. Differ. Equations Appl. 5 (1999), no. 3, 251-270. https://doi.org/10.1080/10236199908808186
- J.R. Graef, C. Qian, Global attractivity of the equilibrium of a nonlinear difference equation, Czechoslovak Math. J. 52 (2002), no. 4, 757-769. https://doi.org/10.1023/B:CMAJ.0000027231.05060.D8
- J.R. Graef, C. Qian, Global attractivity in a nonlinear difference equation and its application, Dynam. Systems Appl. 15 (2002), (2006), no. 1, 89-96.
- Q. He, T. Sun, H. Xi, Dynamics of a family of nonlinear delay difference equations, Abstr. Appl. Anal. 2013, Art. ID 456530, 4 pp. https://doi.org/10.1155/2013/456530
- W.S. Gurney, S.P. Blythe, R.M. Nisbet, Nicholson's blowflies revisited, Nature 287 (1980), 17-21. https://doi.org/10.1038/287017a0
- A.F. Ivanov, On global stability in a nonlinear discrete model, Nonlinear Anal. 23 (1994), no. 11, 1383-1389. https://doi.org/10.1016/0362-546X(94)90133-3
- G. Karakostas, Ch.G. Philos, Y.G. Sficas, The dynamics of some disrete population models, Nonlinear Anal. 17 (1991), no. 11, 1069-1084. https://doi.org/10.1016/0362-546X(91)90192-4
- V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993. https://doi.org/10.1007/978-94-017-1703-8
- T. Newman, J. Antonivics, H. Wilbur, Population dynamics with a refuge: fractal basins and the suppression of chaos, Throret. Pop. Biol. 62 (2002), 121-128. https://doi.org/10.1006/tpbi.2002.1584
- A.J. Nicholson, An outline of the dynamics of animal populations, Austral. J. Zool. 2 (1954), 9-25. https://doi.org/10.1071/ZO9540009
- C. Qian, Global attractivity of solutions of nonlinear delay differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13B (2006), suppl., 25-37.
- C. Qian, Global attractivity of periodic solutions in a higher order difference equation, Appl. Math. Lett. 26 (2013), no. 5, 578-583. https://doi.org/10.1016/j.aml.2012.12.005
- C. Qian, Global attractivity in a nonlinear difference equation and applications to a biological model, Int. J. Difference Equ. 9 (2014), no. 2, 233-242.
- C. Qian, Global attractivity in a nonlinear difference equation and applications to discrete population, Dynam. Systems Appl. 23 (2014), no. 4, 575-589.
- S. Stević, A global convergence results with applications to periodic solutions, Indian J. Pure Appl. Math. 33 (2002), no. 1, 45-53.
- S. Stević, Asymptotic behavior of a sequence defined by iteration with applications, Colloq. Math. 93 (2002), no. 2, 267-276.
- S. Stević, Asymptotic behavior of a nonlinear difference equation, Indian J. Pure Appl. Math. 34 (2003), no. 12, 1681-1687.
- S. Stević, Asymptotic behavior of a class of nonlinear difference equations, Discrete Dyn. Nat. Soc. 2006, Art. ID 47156, 10 pp. https://doi.org/10.1155/DDNS/2006/47156
- S. Stević, B. Iričanin, W. Kosmala, Z. Šmarda, Existence and global attractivity of periodic solutions to some classes of difference equations, Filomat 33 (2019), no. 10, 3187-3201. https://doi.org/10.2298/FIL1910187S
- Abdulaziz Almaslokh
- Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA
- Chuanxi Qian (corresponding author)
- Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA
- Communicated by Stevo Stević.
- Received: 2022-12-13.
- Revised: 2023-01-03.
- Accepted: 2023-01-06.
- Published online: 2023-03-27.