Opuscula Math. 43, no. 1 (2023), 47-66
https://doi.org/10.7494/OpMath.2023.43.1.47
Opuscula Mathematica
Existence of positive radial solutions to a p-Laplacian Kirchhoff type problem on the exterior of a ball
John R. Graef
Doudja Hebboul
Toufik Moussaoui
Abstract. In this paper the authors study the existence of positive radial solutions to the Kirchhoff type problem involving the \(p\)-Laplacian \[-\Big(a+b\int_{\Omega_e}|\nabla u|^p dx\Big)\Delta_p u=\lambda f\left(|x|,u\right),\ x\in \Omega_e,\quad u=0\ \text{on} \ \partial\Omega_e,\] where \(\lambda \gt 0\) is a parameter, \(\Omega_e = \lbrace x\in\mathbb{R}^N : |x|\gt r_0\rbrace\), \(r_0\gt 0\), \(N \gt p \gt 1\), \(\Delta_p\) is the \(p\)-Laplacian operator, and \(f\in C(\left[ r_0, +\infty\right)\times\left[0,+\infty\right),\mathbb{R})\) is a non-decreasing function with respect to its second variable. By using the Mountain Pass Theorem, they prove the existence of positive radial solutions for small values of \(\lambda\).
Keywords: Kirchhoff problem, \(p\)-Laplacian, positive radial solution, variational methods.
Mathematics Subject Classification: 35A01, 35A15, 35B38, 35D30, 35J92.
- N. Aissaoui, W. Long, Positive solutions for a Kirchhoff equation with perturbed source terms, Acta Math. Scientia 42 (2022), 1817-1830. https://doi.org/10.1007/s10473-022-0507-z
- C.O. Alves, F.J.S.A. Corrêa, T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85-93. https://doi.org/10.1016/j.camwa.2005.01.008
- A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
- M. Badiale, E. Serra, Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach, Universitext, Springer, London, 2011.
- H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010.
- D. Butler, E. Ko, E.K. Lee, R. Shivaji, Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions, Comm. Pure Appl. Anal. 13 (2014), 2713-2731. https://doi.org/10.3934/cpaa.2014.13.2713
- A. Castro, R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 291-302. https://doi.org/10.1017/S0308210500014670
- A. Castro, D.G. de Figueiredo, E. Lopera, Existence of positive solutions for a semipositone \(p\)-Laplacian problem, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), 475-482. https://doi.org/10.1017/S0308210515000657
- R. Dhanya, Q. Morris, R. Shivaji, Existence of positive radial solutions for superlinear semipositone problems on the exterior of a ball, J. Math. Anal. Appl. 434 (2016), 1533-1548. https://doi.org/10.1016/j.jmaa.2015.07.016
- M. Ding, C. Zhang, S. Zhou, Local boundedness and Hölder continuity for the parabolic fractional \(p\)-Laplace equations, Calc. Var. Partial Differential Equations 60 (2021), Article no. 38. https://doi.org/10.1007/s00526-020-01870-x
- L. Gasinski, N.S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Series in Mathematical Analysis and Applications, vol. 8, Chapman & Hall/CRC, Boca Raton, 2005.
- J.R. Graef, S. Heidarkhani, L. Kong, A variational approach to a Kirchhoff-type problem involving two parameters, Results Math. 63 (2013), 877-889. https://doi.org/10.1007/s00025-012-0238-x
- J.R. Graef, S. Heidarkhani, L. Kong, Variational-hemivariational inequalities of Kirchhoff-type with small perturbations of nonhomogeneous Neumann boundary conditions, Math. Eng. Sci. Aero. 8 (2017), 345-357.
- J.R. Graef, S. Heidarkhani, L. Kong, S. Moradi, On an anisotropic discrete boundary value problem of Kirchhoff type, J. Difference Equ. Appl. 27 (2021), 1103-1119. https://doi.org/10.1080/10236198.2021.1968847
- J.R. Graef, S. Heidarkhani, L. Kong, A. Ghobadi, Existence of multiple solutions to a \(P\)-Kirchhoff problem, Differ. Equ. Appl. 14 (2022), 227-237. https://doi.org/10.7153/dea-2022-14-15
- L. Guo, Y. Sun, G. Shi, Ground states for fractional nonlocal equations with logarithmic nonlinearity, Opuscula Math. 42 (2022), 157-178. https://doi.org/10.7494/OpMath.2022.42.2.157
- D.D. Hai, Positive radial solutions for singular quasilinear elliptic equations in a ball, Publ. Res. Inst. Math. Sci. 50 (2014), 341-362. https://doi.org/10.4171/PRIMS/136
- W. He, D. Qin, Q. Wu, Existence, multiplicity and nonexistence results for Kirchhoff type equations, Adv. Nonlinear Anal. 10 (2021), 616-635. https://doi.org/10.1515/anona-2020-0154
- G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
- Q. Morris, R. Shivaji, I. Sim, Existence of positive radial solutions for a superlinear semipositone \(p\)-Laplacian problem on the exterior of a ball, Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), 409-428. https://doi.org/10.1017/S0308210517000452
- H. Pi, Y. Zeng, Existence results for the Kirchhoff type equation with a general nonlinear term, Acta Math. Scientia 42 (2022), 2063-2077. https://doi.org/10.1007/s10473-022-0519-8
- D. Qin, V.D. Radulescu, X. Tang, Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations, J. Differential Equations 275 (2021), 652-683. https://doi.org/10.1016/j.jde.2020.11.021
- J. Smoller, A. Wasserman, Existence of positive solutions for semilinear elliptic equations in general domains, Arch. Ration. Mech. Anal. 98 (1987), 229-249. https://doi.org/10.1007/BF00251173
- L. Wang, K. Xie, B. Zhang, Existence and multiplicity of solutions for critical Kirchhoff-type \(p\)-Laplacian problems, J. Math. Anal. Appl. 458 (2018), 361-378. https://doi.org/10.1016/j.jmaa.2017.09.008
- John R. Graef (corresponding author)
https://orcid.org/0000-0002-8149-4633
- University of Tennessee at Chattanooga, Department of Mathematics, Chattanooga, TN 37403, USA
- Doudja Hebboul
- Ecole Normale Supérieure, Laboratory of Partial Differential Equations and History of Mathematics, Kouba, Algiers, Algeria
- Toufik Moussaoui
- Ecole Normale Supérieure, Laboratory of Fixed Point Theory and Applications, Kouba, Algiers, Algeria
- Communicated by Vicentiu D. Rădulescu.
- Received: 2022-08-17.
- Revised: 2022-11-07.
- Accepted: 2022-11-08.
- Published online: 2022-12-30.