Opuscula Math. 42, no. 6 (2022), 793-803
https://doi.org/10.7494/OpMath.2022.42.6.793
Opuscula Mathematica
Nonnegative solutions for a class of semipositone nonlinear elliptic equations in bounded domains of Rn
Imed Bachar
Habib Mâagli
Hassan Eltayeb
Abstract. In this paper, we obtain sufficient conditions for the existence of a unique nonnegative continuous solution of semipositone semilinear elliptic problem in bounded domains of \(\mathbb{R}^n\) (\(n\geq 2\)). The global behavior of this solution is also given.
Keywords: nonnegative solution, semipositone, Kato class, fixed point theorem.
Mathematics Subject Classification: 35J25, 35A01, 35B09, 35J08.
- G.A. Afrouzi, S.H. Rasouli, On positive solutions for some nonlinear semipositone elliptic boundary value problems, Nonlinear Anal. Model. Control 11 (2006), no. 4, 323-329.
- V. Anuradha, D.D. Hai, R. Shivaji, Existence results for superlinear semipositone BVP's, Proc. Amer. Math. Soc. 124 (1996), no. 3, 757-763.
- R. Aris, Introduction to the Analysis of Chemical Reactors, Prentice Hall, New Jersey, 1965.
- M. Bełdziński, M. Galewski, On solvability of elliptic boundary value problems via global invertibility, Opuscula Math. 40 (2020), no. 1, 37-47. https://doi.org/10.7494/OpMath.2020.40.1.37
- K.J. Brown, R. Shivaji, Simple proofs of some results in perturbed bifurcation theory, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982), no. 1-2, 71-82. https://doi.org/10.1017/S030821050003167X
- A. Castro, R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 3-4, 291-302. https://doi.org/10.1017/S0308210500014670
- K.L. Chung, Z. Zhao, From Brownian Motion to Schrödinger's Equation, Springer-Verlag, 1995. https://doi.org/
- G. Figueiredo, V.D. Rădulescu, Nonhomogeneous equations with critical exponential growth and lack of compactness, Opuscula Math. 40 (2020), no. 1, 71-92. https://doi.org/10.7494/OpMath.2020.40.1.71
- J.R. Graef, L. Kong, Positive solutions for third order semipositone boundary value problems, Appl. Math. Lett. 22 (2009), no. 8, 1154-1160. https://doi.org/10.1016/j.aml.2008.11.008
- M. Ghergu, V.D. Rădulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195 (2003), no. 2, 520-536. https://doi.org/10.1016/S0022-0396(03)00105-0
- P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), no. 4, 441-467. https://doi.org/10.1137/1024101
- R. Ma, S. Wang, Positive solutions for some semi-positone problems with nonlinear boundary conditions via bifurcation theory, Mediterr. J. Math. 17 (2020), Article no. 12. https://doi.org/10.1007/s00009-019-1443-6
- H. Mâagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Anal. 74 (2011), no. 9, 2941-2947. https://doi.org/10.1016/j.na.2011.01.011
- H. Mâagli, L. Mâatoug, Singular solutions of a nonlinear equation in bounded domains of \(\mathbb{R}^{2}\), J. Math. Anal. Appl. 270 (2002), 230-246. https://doi.org/10.1016/S0022-247X(02)00069-0
- H. Mâagli, M. Zribi, On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domain of \(\mathbb{R}^{n}\), Positivity 9 (2005), no. 4, 667-686. https://doi.org/10.1007/s11117-005-2782-z
- N.S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math. 42 (2022), no. 2, 257-278. https://doi.org/10.7494/OpMath.2022.42.2.257
- N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Existence and multiplicity of solutions for double-phase Robin problems, Bull. Lond. Math. Soc. 52 (2020), no. 3, 546-560. https://doi.org/10.1112/blms.12347
- S.C. Port, C.J. Stone, Brownian Motion and Classical Potential Theory, Academic Press, San Diego, 1978.
- V.D. Rădulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods, Contemporary Mathematics and its Applications, 6. Hindawi Publishing Corporation, 2008.
- M. Selmi, Inequalities for Green functions in a Dini-Jordan domain in \(\mathbb{R}^{2}\), Potential. Anal. 13 (2000), no. 1, 81-102. https://doi.org/10.1023/A:1008610631562
- F. Toumi, Existence of positive solutions for nonlinear boundary-value problems in bounded domains of \(\mathbb{R}^{2}\), Abstr. Appl. Anal. 2006 (2006), Article ID 95480.
- J. Zhang, W. Zhang, V.D. Rădulescu, Double phase problems with competing potentials: concentration and multiplication of ground states, Math. Z. 301 (2022), no. 4, 4037-4078. https://doi.org/10.1007/s00209-022-03052-1
- X. Zhang, L. Liu, Y. Wu, Positive solutions of nonresonance semipositone singular Dirichlet boundary value problems, Nonlinear Anal. 68 (2008), no. 1, 97-108. https://doi.org/10.1016/j.na.2006.10.034
- W. Zou, X. Li, Existence results for nonlinear degenerate elliptic equations with lower order terms, Adv. Nonlinear Anal. 10 (2021), no. 1, 301-310. https://doi.org/10.1515/anona-2020-0142
- Imed Bachar (corresponding author)
https://orcid.org/0000-0003-3808-5786
- King Saud University, College of Science, Mathematics Department, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Habib Mâagli
https://orcid.org/0000-0002-7977-8039
- King Abdulaziz University, College of Sciences and Arts, Rabigh Campus, Department of Mathematics, P.O. Box 344, Rabigh 21911, Saudi Arabia
- Hassan Eltayeb
https://orcid.org/0000-0003-1820-9921
- King Saud University, College of Science, Mathematics Department, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Communicated by Vicentiu D. Rădulescu.
- Received: 2022-05-26.
- Revised: 2022-09-18.
- Accepted: 2022-09-19.
- Published online: 2022-11-24.