Opuscula Math. 42, no. 6 (2022), 793-803
https://doi.org/10.7494/OpMath.2022.42.6.793

 
Opuscula Mathematica

Nonnegative solutions for a class of semipositone nonlinear elliptic equations in bounded domains of Rn

Imed Bachar
Habib Mâagli
Hassan Eltayeb

Abstract. In this paper, we obtain sufficient conditions for the existence of a unique nonnegative continuous solution of semipositone semilinear elliptic problem in bounded domains of \(\mathbb{R}^n\) (\(n\geq 2\)). The global behavior of this solution is also given.

Keywords: nonnegative solution, semipositone, Kato class, fixed point theorem.

Mathematics Subject Classification: 35J25, 35A01, 35B09, 35J08.

Full text (pdf)

  1. G.A. Afrouzi, S.H. Rasouli, On positive solutions for some nonlinear semipositone elliptic boundary value problems, Nonlinear Anal. Model. Control 11 (2006), no. 4, 323-329.
  2. V. Anuradha, D.D. Hai, R. Shivaji, Existence results for superlinear semipositone BVP's, Proc. Amer. Math. Soc. 124 (1996), no. 3, 757-763.
  3. R. Aris, Introduction to the Analysis of Chemical Reactors, Prentice Hall, New Jersey, 1965.
  4. M. Bełdziński, M. Galewski, On solvability of elliptic boundary value problems via global invertibility, Opuscula Math. 40 (2020), no. 1, 37-47. https://doi.org/10.7494/OpMath.2020.40.1.37
  5. K.J. Brown, R. Shivaji, Simple proofs of some results in perturbed bifurcation theory, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982), no. 1-2, 71-82. https://doi.org/10.1017/S030821050003167X
  6. A. Castro, R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 3-4, 291-302. https://doi.org/10.1017/S0308210500014670
  7. K.L. Chung, Z. Zhao, From Brownian Motion to Schrödinger's Equation, Springer-Verlag, 1995. https://doi.org/
  8. G. Figueiredo, V.D. Rădulescu, Nonhomogeneous equations with critical exponential growth and lack of compactness, Opuscula Math. 40 (2020), no. 1, 71-92. https://doi.org/10.7494/OpMath.2020.40.1.71
  9. J.R. Graef, L. Kong, Positive solutions for third order semipositone boundary value problems, Appl. Math. Lett. 22 (2009), no. 8, 1154-1160. https://doi.org/10.1016/j.aml.2008.11.008
  10. M. Ghergu, V.D. Rădulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195 (2003), no. 2, 520-536. https://doi.org/10.1016/S0022-0396(03)00105-0
  11. P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), no. 4, 441-467. https://doi.org/10.1137/1024101
  12. R. Ma, S. Wang, Positive solutions for some semi-positone problems with nonlinear boundary conditions via bifurcation theory, Mediterr. J. Math. 17 (2020), Article no. 12. https://doi.org/10.1007/s00009-019-1443-6
  13. H. Mâagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Anal. 74 (2011), no. 9, 2941-2947. https://doi.org/10.1016/j.na.2011.01.011
  14. H. Mâagli, L. Mâatoug, Singular solutions of a nonlinear equation in bounded domains of \(\mathbb{R}^{2}\), J. Math. Anal. Appl. 270 (2002), 230-246. https://doi.org/10.1016/S0022-247X(02)00069-0
  15. H. Mâagli, M. Zribi, On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domain of \(\mathbb{R}^{n}\), Positivity 9 (2005), no. 4, 667-686. https://doi.org/10.1007/s11117-005-2782-z
  16. N.S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math. 42 (2022), no. 2, 257-278. https://doi.org/10.7494/OpMath.2022.42.2.257
  17. N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Existence and multiplicity of solutions for double-phase Robin problems, Bull. Lond. Math. Soc. 52 (2020), no. 3, 546-560. https://doi.org/10.1112/blms.12347
  18. S.C. Port, C.J. Stone, Brownian Motion and Classical Potential Theory, Academic Press, San Diego, 1978.
  19. V.D. Rădulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods, Contemporary Mathematics and its Applications, 6. Hindawi Publishing Corporation, 2008.
  20. M. Selmi, Inequalities for Green functions in a Dini-Jordan domain in \(\mathbb{R}^{2}\), Potential. Anal. 13 (2000), no. 1, 81-102. https://doi.org/10.1023/A:1008610631562
  21. F. Toumi, Existence of positive solutions for nonlinear boundary-value problems in bounded domains of \(\mathbb{R}^{2}\), Abstr. Appl. Anal. 2006 (2006), Article ID 95480.
  22. J. Zhang, W. Zhang, V.D. Rădulescu, Double phase problems with competing potentials: concentration and multiplication of ground states, Math. Z. 301 (2022), no. 4, 4037-4078. https://doi.org/10.1007/s00209-022-03052-1
  23. X. Zhang, L. Liu, Y. Wu, Positive solutions of nonresonance semipositone singular Dirichlet boundary value problems, Nonlinear Anal. 68 (2008), no. 1, 97-108. https://doi.org/10.1016/j.na.2006.10.034
  24. W. Zou, X. Li, Existence results for nonlinear degenerate elliptic equations with lower order terms, Adv. Nonlinear Anal. 10 (2021), no. 1, 301-310. https://doi.org/10.1515/anona-2020-0142
  • Habib Mâagli
  • ORCID iD https://orcid.org/0000-0002-7977-8039
  • King Abdulaziz University, College of Sciences and Arts, Rabigh Campus, Department of Mathematics, P.O. Box 344, Rabigh 21911, Saudi Arabia
  • Communicated by Vicentiu D. Rădulescu.
  • Received: 2022-05-26.
  • Revised: 2022-09-18.
  • Accepted: 2022-09-19.
  • Published online: 2022-11-24.
Opuscula Mathematica - cover

Cite this article as:
Imed Bachar, Habib Mâagli, Hassan Eltayeb, Nonnegative solutions for a class of semipositone nonlinear elliptic equations in bounded domains of Rn, Opuscula Math. 42, no. 6 (2022), 793-803, https://doi.org/10.7494/OpMath.2022.42.6.793

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.