Opuscula Math. 42, no. 5 (2022), 751-761
https://doi.org/10.7494/OpMath.2022.42.5.751
Opuscula Mathematica
Notes on aplications of the dual fountain theorem to local and nonlocal elliptic equations with variable exponent
Abstract. Using the Dual Fountain Theorem we obtain some existence of infinitely many solutions for local and nonlocal elliptic equations with variable exponent. Our results correct some of the errors that have appeared recently in the literature.
Keywords: dual fountain theorem, \(p(\cdot)\)-Laplacian, fractional \(p(\cdot)\)-Laplacian, infinitely many solutions.
Mathematics Subject Classification: 35J60, 35D30, 35J20.
- R. Arora, J. Giacomoni, G. Warnault, A Picone identity for variable exponent operators and applications, Adv. Nonlinear Anal. 9 (2020), no. 1, 327-360. https://doi.org/10.1515/anona-2020-0003
- E. Azroul, A. Benkirane, M. Shimi, General fractional Sobolev space with variable exponent and applications to nonlocal problems, Adv. Oper. Theory 5 (2020), 1512-1540. https://doi.org/10.1007/s43036-020-00062-w
- Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383-1406. https://doi.org/10.1137/050624522
- A. Crespo-Blanco, L. Gasiński, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems: existence and uniqueness, J. Differential Equations 323 (2022), 182-228. https://doi.org/10.1016/j.jde.2022.03.029
- L. Diening, P. Harjulehto, P. Hästö, M. Růžicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin, 2011.
- X.L. Fan, Q.H. Zhang, Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5
- P. Hájek, V.M. Santalucía, J. Vanderwerff, V. Zizler, Biorthogonal Systems in Banach Spaces, Springer, New York, 2008.
- K. Ho, Y.-H. Kim, P. Winkert, C. Zhang, The boundedness and Hölder continuity of weak solutions to elliptic equations involving variable exponents and critical growth, J. Differential Equations 313 (2022), 503-532. https://doi.org/10.1016/j.jde.2022.01.004
- E.J. Hurtado, O.H. Miyagaki, R.S. Rodrigues, Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions, J. Dynam. Differential Equations 30 (2018), no. 2, 405-432. https://doi.org/10.1007/s10884-016-9542-6
- I.H. Kim, Y.-H. Kim, M.W. Oh, S. Zeng, Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent, Nonlinear Anal. Real World Appl. 672 (2022), Paper no. 103627. https://doi.org/10.1016/j.nonrwa.2022.103627
- V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Non-standard Function Spaces, Volume 1: Variable Exponent Lebesgue and Amalgam Spaces, Operator Theory: Advances and Applications, vol. 248, Birkhaüser, Basel, 2016.
- J.I. Lee, J.M. Kim, Y.H. Kim, J. Lee, Multiplicity of weak solutions to non-local elliptic equations involving the fractional \(p(x)\)-Laplacian, J. Math. Phys. 61 (2020), 011505. https://doi.org/10.1063/1.5111786
- V.D. Rădulescu, Isotropic and anisotropic double-phase problems: old and new, Opuscula Math. 39 (2019), no. 2, 259-279. https://doi.org/10.7494/OpMath.2019.39.2.259
- V.D. Rădulescu, D. Repovs, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Taylor and Francis Group, Boca Raton FL, 2015.
- M.A. Ragusa, A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020), no. 1, 710-728. https://doi.org/10.1515/anona-2020-0022
- M. Růžicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002.
- J. Simsen, M. Simsen, P. Wittbold, Reaction-diffusion coupled inclusions with variable exponents and large diffusion, Opuscula Math. 41 (2021), no. 4, 539-570. https://doi.org/10.7494/OpMath.2021.41.4.539
- R. Stegliński, Infinitely many solutions for double phase problem with unbounded potential in \(\mathbb{R}^N\), Nonlinear Anal. 214 (2022), Paper no. 112580, 20 pp. https://doi.org/10.1016/j.na.2021.112580
- M. Willem, Minimax Theorems, Birkhäuser, Basel, 1996.
- Robert Stegliński
https://orcid.org/0000-0002-5621-1945
- Lodz University of Technology, Institute of Mathematics, Politechniki 8, 93-590 Lodz, Poland
- Communicated by Vicentiu D. Rădulescu.
- Received: 2022-04-25.
- Revised: 2022-07-02.
- Accepted: 2022-07-04.
- Published online: 2022-09-08.