Opuscula Math. 42, no. 5 (2022), 727-749
https://doi.org/10.7494/OpMath.2022.42.5.727

 
Opuscula Mathematica

Positive stationary solutions of convection-diffusion equations for superlinear sources

Aleksandra Orpel

Abstract. We investigate the existence and multiplicity of positive stationary solutions for acertain class of convection-diffusion equations in exterior domains. This problem leads to the following elliptic equation \[\Delta u(x)+f(x,u(x))+g(x)x\cdot \nabla u(x)=0,\] for \(x\in \Omega_{R}=\{ x \in \mathbb{R}^n, \|x\|\gt R \}\), \(n\gt 2\). The goal of this paper is to show that our problem possesses an uncountable number of nondecreasing sequences of minimal solutions with finite energy in a neighborhood of infinity. We also prove that each of these sequences generates another solution of the problem. The case when \(f(x,\cdot)\) may be negative at the origin, so-called semipositone problem, is also considered. Our results are based on a certain iteration schema in which we apply the sub and supersolution method developed by Noussair and Swanson. The approach allows us to consider superlinear problems with convection terms containing functional coefficient \(g\) without radial symmetry.

Keywords: semipositone problems, positive stationary solutions, minimal solutions with finite energy, sub and supersolutions methods.

Mathematics Subject Classification: 35B09, 35B40, 35J15, 35J61.

Full text (pdf)

  1. K. Alhumaizi, Flux-limiting solution techniques for simulation of reaction-diffusion-convection system, Commun. Nonlinear Sci. Numer. Simul. 12 (2007), 953-965. https://doi.org/10.1016/j.cnsns.2005.11.005
  2. A. Castro, L. Sankar, R. Shivaji, Uniqueness of nonnegative solutions for semipositone problems on exterior domains, J. Math. Anal. Appl. 394 (2012), 432-437. https://doi.org/10.1016/j.jmaa.2012.04.005
  3. I.P. Clement, G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Ann. Sc. Norm. Sup. Pisa (4) 14 (1987), no. 1, 97-121.
  4. A. Constantin, Existence of positive solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc. 54 (1996), 147-154. https://doi.org/10.1017/S0004972700015148
  5. A. Constantin, Positive solutions of quasilinear elliptic equations, J. Math. Anal. Appl. 213 (1997), 334-339. https://doi.org/10.1006/jmaa.1997.5541
  6. A. Constantin, On the existence of positive solutions of second order differential equations, Ann. Mat. Pura Appl. 184 (2005), 131-138. https://doi.org/10.1007/s10231-004-0100-1
  7. J. Deng, Bounded positive solutions of semilinear elliptic equations, J. Math. Anal. Appl. 336 (2007), 1395-1405. https://doi.org/10.1016/j.jmaa.2007.03.071
  8. J. Deng, Existence of bounded positive solutions of semilinear elliptic equations, Nonlinear Anal. 68 (2008), 3697-3706. https://doi.org/10.1016/j.na.2007.04.012
  9. S. Djebali, T. Moussaoui, O.G. Mustafa, Positive evanescent solutions of nonlinear elliptic equations, J. Math. Anal. Appl. 333 (2007), 863-870. https://doi.org/10.1016/j.jmaa.2006.12.004
  10. S. Djebali, A. Orpel, A note on positive evanescent solutions for a certain class of elliptic problems, J. Math. Anal. Appl. 353 (2009), 215-223. https://doi.org/10.1016/j.jmaa.2008.12.003
  11. S. Djebali, A. Orpel, Continuous dependence on parameters of solutions for a class of elliptic problems on exterior domains, Nonlinear Anal. 73 (2010), 660-672. https://doi.org/10.1016/j.na.2010.03.054
  12. M. Ehrnström, Positive solutions for second-order nonlinear differential equation, Nonlinear Anal.: Theory, Methods & Applications 64 (2006), 1608-1620. https://doi.org/10.1016/j.na.2005.07.010
  13. M. Ehrnström, On radial solutions of certain semi-linear elliptic equations, Nonlinear Anal. 64 (2006), 1578-1586. https://doi.org/10.1016/j.na.2005.07.008
  14. M. Ehrnström, Existence of global solutions of semilinear elliptic equations, Nonlinear Anal. 71 (2009), 1606-1610. https://doi.org/10.1016/j.na.2008.12.051
  15. M. Ehrnström, O.G. Mustafa, On positive solutions of a class of nonlinear elliptic equations, Nonlinear Anal. 67 (2007), 1147-1154. https://doi.org/10.1016/j.na.2006.07.002
  16. R.E. Ewing (ed.), The Mathematics of Reservoir Simulation, vol.1 of Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1983.
  17. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin-Heidelberg, New York-Tokyo, 1983.
  18. P.V. Gordon, E. Ko, R. Shivaji, Multiplicity and uniqueness of positive solutions for elliptic equations with nonlinear boundary conditions arising in a theory of thermal explosion, Nonlinear Anal. Real World Appl. 15 (2014), 51-57. https://doi.org/10.1016/j.nonrwa.2013.05.005
  19. P. Habets, F. Zanolin, Upper an lower solutions for a generalized Emden-Fowler equation, J. Math. Anal. Appl. 181 (1994), 684-700. https://doi.org/10.1006/jmaa.1994.1052
  20. C. Hirsch, Numerical Computation of Internal and External Flows, vol. 1, Wiley, Chichester, 1988.
  21. M. Jakob, Heat Transfer, Wiley, New York, 1959.
  22. E. Ko, E. Lee, R. Shivaji, Multiplicity results for classes of singular problems on an exterior domain, Discrete Contin. Dyn. Syst. 33 (2013), 5153-5166. https://doi.org/10.3934/dcds.2013.33.5153
  23. E. Ko, M. Ramaswamy, R. Shivaji, Uniqueness of positive radial solutions for a class of semipositone problems on the exterior of a ball, J. Math. Anal. Appl. 423 (2015), 399-409. https://doi.org/10.1016/j.jmaa.2014.09.058
  24. H.O. Kreiss, J. Lorenz, Initial-boundary Value Problems and the Navier-Stokes Equations, vol. 47 of Classics in Appl. Math. SIAM, Philadelphia, PA, 2004, Reprint of the 1989 edition.
  25. E.S. Noussair, C.A. Swanson, Positive solutions of quasilinear elliptic equations in exterior domains, J. Math. Anal. Appl. 75 (1980), 121-133. https://doi.org/10.1016/0022-247X(80)90310-8
  26. E.S. Noussair, C.A. Swanson, Asymptotics for semilinear elliptic systems, Canad. Math. Bull. 34 (1991), no. 4, 514-519. https://doi.org/10.4153/CMB-1991-081-4
  27. E.S. Noussair, C.A. Swanson, Multiple finite energy solutions of critical semilinear field equations, J. Math. Anal. Appl. 195 (1995), 278-293.
  28. A. Orpel, Increasing sequences of positive evanescent solutions of nonlinear elliptic equations, J. Differential Equations 259 (2015), no. 5, 1743-1756. https://doi.org/10.1016/j.jde.2015.03.010
  29. A. Orpel, Uncountable sets of finite energy solutions for semilinear elliptic problems in exterior domains, J. Math. Anal. Appl. 472 (2019), 1175-1188. https://doi.org/10.1016/j.jmaa.2018.11.071
  30. A. Rap, L. Elliott, D.B. Ingham, D. Lesnic, X. Wen, The inverse source problem for the variable coefficients convection-diffusion equation, Inverse Probl. Sci. Eng. 15 (2007), 413-440. https://doi.org/10.1080/17415970600731274
  31. L. Sankar, S. Sasi, R. Shivaji, Semipositone problems with falling zeros on exterior domains, J. Math. Anal. Appl. 401 (2013), 146-153. https://doi.org/10.1016/j.jmaa.2012.11.031
  32. J. Serrin, Nonlinear equations of second order, [in:] A.M.S. Sympos. Partial Differential Equations, Berkeley, August 1971.
  33. Z. Yin, Monotone positive solutions of second-order nonlinear differential equations, Nonlinear Anal. 54 (2003), 391-403. https://doi.org/10.1016/S0362-546X(03)00089-0
  • Communicated by Marek Galewski.
  • Received: 2021-12-20.
  • Revised: 2022-07-01.
  • Accepted: 2022-07-26.
  • Published online: 2022-09-08.
Opuscula Mathematica - cover

Cite this article as:
Aleksandra Orpel, Positive stationary solutions of convection-diffusion equations for superlinear sources, Opuscula Math. 42, no. 5 (2022), 727-749, https://doi.org/10.7494/OpMath.2022.42.5.727

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.