Opuscula Math. 42, no. 5 (2022), 727-749
https://doi.org/10.7494/OpMath.2022.42.5.727
Opuscula Mathematica
Positive stationary solutions of convection-diffusion equations for superlinear sources
Abstract. We investigate the existence and multiplicity of positive stationary solutions for acertain class of convection-diffusion equations in exterior domains. This problem leads to the following elliptic equation \[\Delta u(x)+f(x,u(x))+g(x)x\cdot \nabla u(x)=0,\] for \(x\in \Omega_{R}=\{ x \in \mathbb{R}^n, \|x\|\gt R \}\), \(n\gt 2\). The goal of this paper is to show that our problem possesses an uncountable number of nondecreasing sequences of minimal solutions with finite energy in a neighborhood of infinity. We also prove that each of these sequences generates another solution of the problem. The case when \(f(x,\cdot)\) may be negative at the origin, so-called semipositone problem, is also considered. Our results are based on a certain iteration schema in which we apply the sub and supersolution method developed by Noussair and Swanson. The approach allows us to consider superlinear problems with convection terms containing functional coefficient \(g\) without radial symmetry.
Keywords: semipositone problems, positive stationary solutions, minimal solutions with finite energy, sub and supersolutions methods.
Mathematics Subject Classification: 35B09, 35B40, 35J15, 35J61.
- K. Alhumaizi, Flux-limiting solution techniques for simulation of reaction-diffusion-convection system, Commun. Nonlinear Sci. Numer. Simul. 12 (2007), 953-965. https://doi.org/10.1016/j.cnsns.2005.11.005
- A. Castro, L. Sankar, R. Shivaji, Uniqueness of nonnegative solutions for semipositone problems on exterior domains, J. Math. Anal. Appl. 394 (2012), 432-437. https://doi.org/10.1016/j.jmaa.2012.04.005
- I.P. Clement, G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Ann. Sc. Norm. Sup. Pisa (4) 14 (1987), no. 1, 97-121.
- A. Constantin, Existence of positive solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc. 54 (1996), 147-154. https://doi.org/10.1017/S0004972700015148
- A. Constantin, Positive solutions of quasilinear elliptic equations, J. Math. Anal. Appl. 213 (1997), 334-339. https://doi.org/10.1006/jmaa.1997.5541
- A. Constantin, On the existence of positive solutions of second order differential equations, Ann. Mat. Pura Appl. 184 (2005), 131-138. https://doi.org/10.1007/s10231-004-0100-1
- J. Deng, Bounded positive solutions of semilinear elliptic equations, J. Math. Anal. Appl. 336 (2007), 1395-1405. https://doi.org/10.1016/j.jmaa.2007.03.071
- J. Deng, Existence of bounded positive solutions of semilinear elliptic equations, Nonlinear Anal. 68 (2008), 3697-3706. https://doi.org/10.1016/j.na.2007.04.012
- S. Djebali, T. Moussaoui, O.G. Mustafa, Positive evanescent solutions of nonlinear elliptic equations, J. Math. Anal. Appl. 333 (2007), 863-870. https://doi.org/10.1016/j.jmaa.2006.12.004
- S. Djebali, A. Orpel, A note on positive evanescent solutions for a certain class of elliptic problems, J. Math. Anal. Appl. 353 (2009), 215-223. https://doi.org/10.1016/j.jmaa.2008.12.003
- S. Djebali, A. Orpel, Continuous dependence on parameters of solutions for a class of elliptic problems on exterior domains, Nonlinear Anal. 73 (2010), 660-672. https://doi.org/10.1016/j.na.2010.03.054
- M. Ehrnström, Positive solutions for second-order nonlinear differential equation, Nonlinear Anal.: Theory, Methods & Applications 64 (2006), 1608-1620. https://doi.org/10.1016/j.na.2005.07.010
- M. Ehrnström, On radial solutions of certain semi-linear elliptic equations, Nonlinear Anal. 64 (2006), 1578-1586. https://doi.org/10.1016/j.na.2005.07.008
- M. Ehrnström, Existence of global solutions of semilinear elliptic equations, Nonlinear Anal. 71 (2009), 1606-1610. https://doi.org/10.1016/j.na.2008.12.051
- M. Ehrnström, O.G. Mustafa, On positive solutions of a class of nonlinear elliptic equations, Nonlinear Anal. 67 (2007), 1147-1154. https://doi.org/10.1016/j.na.2006.07.002
- R.E. Ewing (ed.), The Mathematics of Reservoir Simulation, vol.1 of Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1983.
- D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin-Heidelberg, New York-Tokyo, 1983.
- P.V. Gordon, E. Ko, R. Shivaji, Multiplicity and uniqueness of positive solutions for elliptic equations with nonlinear boundary conditions arising in a theory of thermal explosion, Nonlinear Anal. Real World Appl. 15 (2014), 51-57. https://doi.org/10.1016/j.nonrwa.2013.05.005
- P. Habets, F. Zanolin, Upper an lower solutions for a generalized Emden-Fowler equation, J. Math. Anal. Appl. 181 (1994), 684-700. https://doi.org/10.1006/jmaa.1994.1052
- C. Hirsch, Numerical Computation of Internal and External Flows, vol. 1, Wiley, Chichester, 1988.
- M. Jakob, Heat Transfer, Wiley, New York, 1959.
- E. Ko, E. Lee, R. Shivaji, Multiplicity results for classes of singular problems on an exterior domain, Discrete Contin. Dyn. Syst. 33 (2013), 5153-5166. https://doi.org/10.3934/dcds.2013.33.5153
- E. Ko, M. Ramaswamy, R. Shivaji, Uniqueness of positive radial solutions for a class of semipositone problems on the exterior of a ball, J. Math. Anal. Appl. 423 (2015), 399-409. https://doi.org/10.1016/j.jmaa.2014.09.058
- H.O. Kreiss, J. Lorenz, Initial-boundary Value Problems and the Navier-Stokes Equations, vol. 47 of Classics in Appl. Math. SIAM, Philadelphia, PA, 2004, Reprint of the 1989 edition.
- E.S. Noussair, C.A. Swanson, Positive solutions of quasilinear elliptic equations in exterior domains, J. Math. Anal. Appl. 75 (1980), 121-133. https://doi.org/10.1016/0022-247X(80)90310-8
- E.S. Noussair, C.A. Swanson, Asymptotics for semilinear elliptic systems, Canad. Math. Bull. 34 (1991), no. 4, 514-519. https://doi.org/10.4153/CMB-1991-081-4
- E.S. Noussair, C.A. Swanson, Multiple finite energy solutions of critical semilinear field equations, J. Math. Anal. Appl. 195 (1995), 278-293.
- A. Orpel, Increasing sequences of positive evanescent solutions of nonlinear elliptic equations, J. Differential Equations 259 (2015), no. 5, 1743-1756. https://doi.org/10.1016/j.jde.2015.03.010
- A. Orpel, Uncountable sets of finite energy solutions for semilinear elliptic problems in exterior domains, J. Math. Anal. Appl. 472 (2019), 1175-1188. https://doi.org/10.1016/j.jmaa.2018.11.071
- A. Rap, L. Elliott, D.B. Ingham, D. Lesnic, X. Wen, The inverse source problem for the variable coefficients convection-diffusion equation, Inverse Probl. Sci. Eng. 15 (2007), 413-440. https://doi.org/10.1080/17415970600731274
- L. Sankar, S. Sasi, R. Shivaji, Semipositone problems with falling zeros on exterior domains, J. Math. Anal. Appl. 401 (2013), 146-153. https://doi.org/10.1016/j.jmaa.2012.11.031
- J. Serrin, Nonlinear equations of second order, [in:] A.M.S. Sympos. Partial Differential Equations, Berkeley, August 1971.
- Z. Yin, Monotone positive solutions of second-order nonlinear differential equations, Nonlinear Anal. 54 (2003), 391-403. https://doi.org/10.1016/S0362-546X(03)00089-0
- Aleksandra Orpel
https://orcid.org/0000-0001-8360-7083
- University of Lodz, Faculty of Mathematics and Computer Science, S. Banacha 22, 90-238 Lodz, Poland
- Communicated by Marek Galewski.
- Received: 2021-12-20.
- Revised: 2022-07-01.
- Accepted: 2022-07-26.
- Published online: 2022-09-08.