Opuscula Math. 42, no. 5 (2022), 709-725
https://doi.org/10.7494/OpMath.2022.42.5.709

 
Opuscula Mathematica

On the numerical solution of one inverse problem for a linearized two-dimensional system of Navier-Stokes equations

Muvasharkhan Jenaliyev
Murat Ramazanov
Madi Yergaliyev

Abstract. The paper studies the numerical solution of the inverse problem for a linearized two-dimensional system of Navier-Stokes equations in a circular cylinder with a final overdetermination condition. For a biharmonic operator in a circle, a generalized spectral problem has been posed. For the latter, a system of eigenfunctions and eigenvalues is constructed, which is used in the work for the numerical solution of the inverse problem in a circular cylinder with specific numerical data. Graphs illustrating the results of calculations are presented.

Keywords: Navier-Stokes equations, inverse problem, numerical solution.

Mathematics Subject Classification: 35Q30, 35R30, 65N21.

Full text (pdf)

  1. R.A. Adams, J.J.F. Fournier, Sobolev Spaces, 2nd ed., Elsevier, Amsterdam, 2003.
  2. M.M. Amangaliyeva, M.T. Jenaliyev, M.I. Ramazanov, S.A. Iskakov, On a boundary value problem for the heat equation and a singular integral equation associated with it, Appl. Math. Comput. 399 (2021), 126009. https://doi.org/10.1016/j.amc.2021.126009
  3. K. Atifi, El-H. Essoufi, B. Khouiti, An inverse backward problem for degenerate two-dimensional parabolic equation, Opuscula Math. 40 (2020), no. 4, 427-449. https://doi.org/10.7494/OpMath.2020.40.4.427
  4. M. Choulli, O.Y. Imanuvilov, M. Yamamoto, Inverse source problem for linearized Navier-Stokes equations with data in arbitrary sub-domain, Appl. Anal. 92 (2013), no. 10, 2127-2143. https://doi.org/10.1080/00036811.2012.718334
  5. J. Fan, G. Nakamura, Well-possedness of an inverse problem of Navier-Stokes equations with the final overdetermination, J. Inv. Ill-Posed Problems 17 (2009), 565-584. https://doi.org/10.1515/JIIP.2009.035
  6. A.V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, AMS, Providence, Rhode Island, 1999.
  7. L.S. Gnoensky, G.A. Kamensky, L.E. Elsholtz, Mathematical foundations of the theory of controlled systems, Phys. and Math. Lit., Moscow, 1969 [in Russian].
  8. A. Hasanov, M. Otelbev, B. Akpayev, Inverse heat conduction problems with boundary and final time measured output data, Inverse Probl. Sci. Eng. 19 (2011), no. 7, 985-1006. https://doi.org/10.1080/17415977.2011.565931
  9. M. Jenaliyev, M. Ramazanov, M. Yergaliyev, On the coefficient inverse problem of heat conduction in a degenerating domain, Appl. Anal. 99 (2020), no. 6, 1026-1041. https://doi.org/10.1080/00036811.2018.1518523
  10. M.T. Jenaliyev, M.I. Ramazanov, M.G. Yergaliyev, On an inverse problem for a parabolic equation in a degenerating angular domain, Eurasian Math. J. 12 (2021), no. 2, 25-38. https://doi.org/10.32523/2077-9879-2021-12-2-25-38
  11. S.I. Kabanikhin, Inverse and Ill-Posed Problems. Theory and Applications, Walter de Gruyter GmbH & Co. KG, Berlin/Boston, 2012.
  12. A.I. Kozhanov, Inverse problems of finding the absorption parameter in the diffusion equation, Math. Notes 106 (2019), no. 3, 378-389. https://doi.org/10.1134/S0001434619090074
  13. O.A. Ladyzhenskaya, Mathematical Questions in the Dynamics of a Viscous Incompressible Fluid, Nauka, Moscow, 1970 [in Russian].
  14. R.-Y. Lai, G. Uhlmann, J.-N. Wang, Inverse boundary value problem for the Stokes and the Navier-Stokes equations in the plane, Arch. Ration. Mech. Anal. 215 (2015), 811-829. https://doi.org/10.1007/s00205-014-0794-1
  15. M.A. Lavrentev, B.V. Shabat, Methods of the theory of function of complex variable, Phys. and Math. Lit., Moscow, 1965 [in Russian].
  16. J.-L. Lions, Some Methods for Solving Nonlinear Boundary Problems, Mir, Moscow, 1972 [in Russian].
  17. J.-L. Lions, Controle des Systemes Distribues Singuliers, Gauthier Villars, 1983.
  18. V. Maksimov, A dynamical inverse problem for a parabolic equation, Opuscula Math. 26 (2006), no. 2, 327-342.
  19. M. Malec, L. Sapa, A finite difference method for nonlinear parabolic-elliptic systems of second-order partial differential equations, Opuscula Math. 27 (2007), no. 2, 259-289.
  20. A.I. Prilepko, I.A. Vasin, Some inverse initial-boundary value problems for non-stationary linearized Navier-Stokes equations, Differ. Equ. 25 (1989), no. 1, 106-117 [in Russian].
  21. A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker Inc., New York, Basel, 2000.
  22. M. Ramazanov, M. Jenaliyev, N. Gulmanov, Solution of the boundary value problem of heat conduction in a cone, Opuscula Math. 42 (2022), no. 1, 75-91. https://doi.org/10.7494/OpMath.2022.42.1.75
  23. R.S. Saks, Solution of the spectral problem for the curl and Stokes operators with periodic boundary conditions, J. Math. Sci. 136 (2006), 3794-3811. https://doi.org/10.1007/s10958-006-0201-z
  24. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Mir, Moscow, 1981 [in Russian].
  25. A.N. Tikhonov, V.Ya. Arsenin, Methods of Solution of Ill-Posed Problems, Nauka, Moscow, 1986 [in Russian].
  26. B.A. Ton, Optimal shape control problem for the Navier-Stokes equations, J. Control Optim. 41 (2003), no. 6, 1733-1747. https://doi.org/10.1137/S0363012901391287
  27. N.H. Tuan, On some inverse problem for bi-parabolic equation with observed data in \(L^p\) spaces, Opuscula Math. 42 (2022), no. 2, 305-335. https://doi.org/10.7494/OpMath.2022.42.2.305
  28. I.A. Vasin, A.I. Prilepko, On the solvability of the spatial inverse problem for nonlinear Navier-Stokes equations, Jour. of Comp. Math. and Math. Phys. 10 (1990), no. 10, 1549-1552 [in Russian].
  • Muvasharkhan Jenaliyev
  • ORCID iD https://orcid.org/0000-0001-8743-7026
  • Institute of Mathematics and Mathematical Modeling, Department of Differential Equations, Pushkin Str. 125, 050010 Almaty, Republic of Kazakhstan
  • Murat Ramazanov
  • ORCID iD https://orcid.org/0000-0002-2297-5488
  • Institute of Mathematics and Mathematical Modeling, Department of Differential Equations, Pushkin Str. 125, 050010 Almaty, Republic of Kazakhstan
  • E.A. Buketov Karaganda University, Department of Differential Equations, University Str. 28, 100028 Karaganda, Republic of Kazakhstan
  • Madi Yergaliyev (corresponding author)
  • ORCID iD https://orcid.org/0000-0001-8638-4647
  • Institute of Mathematics and Mathematical Modeling, Department of Differential Equations, Pushkin Str. 125, 050010 Almaty, Republic of Kazakhstan
  • Al-Farabi Kazakh National University, Department of Mechanics and Mathematics, 71 Al-Farabi Ave., 050040 Almaty, Republic of Kazakhstan
  • Communicated by Mirosław Lachowicz.
  • Received: 2022-03-14.
  • Revised: 2022-07-19.
  • Accepted: 2022-07-24.
  • Published online: 2022-09-08.
Opuscula Mathematica - cover

Cite this article as:
Muvasharkhan Jenaliyev, Murat Ramazanov, Madi Yergaliyev, On the numerical solution of one inverse problem for a linearized two-dimensional system of Navier-Stokes equations, Opuscula Math. 42, no. 5 (2022), 709-725, https://doi.org/10.7494/OpMath.2022.42.5.709

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.