Opuscula Math. 42, no. 5 (2022), 691-708
https://doi.org/10.7494/OpMath.2022.42.5.691

 
Opuscula Mathematica

Nonlinear Choquard equations on hyperbolic space

Haiyang He

Abstract. In this paper, our purpose is to prove the existence results for the following nonlinear Choquard equation \[-\Delta_{\mathbb{B}^{N}}u=\int_{\mathbb{B}^N}\dfrac{|u(y)|^{p}}{|2\sinh\frac{\rho(T_y(x))}{2}|^\mu} dV_y \cdot |u|^{p-2}u +\lambda u\] on the hyperbolic space \(\mathbb{B}^N\), where \(\Delta_{\mathbb{B}^{N}}\) denotes the Laplace-Beltrami operator on \(\mathbb{B}^N\), \[\sinh\frac{\rho(T_y(x))}{2}=\dfrac{|T_y(x)|}{\sqrt{1-|T_y(x)|^2}}=\dfrac{|x-y|}{\sqrt{(1-|x|^2)(1-|y|^2)}},\] \(\lambda\) is a real parameter, \(0\lt \mu\lt N\), \(1\lt p\leq 2_\mu^*\), \(N\geq 3\) and \(2_\mu^*:=\frac{2N-\mu}{N-2}\) is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.

Keywords: nonlinear Choquard equation, hyperbolic space, existence solutions, Hardy-Littlewood-Sobolev inequality.

Mathematics Subject Classification: 35A01, 35J60.

Full text (pdf)

  1. M. Bhakta, K. Sandeep, Poincaré-Sobolev equations in the hyperbolic space, Calc. Var. Partial Differential Equations 44 (2012), 247-269. https://doi.org/10.1007/s00526-011-0433-8
  2. M. Bonforte, F. Gazzola, G. Grillo, J.L. Vázquez, Classification of radial solutions to the Emden-Fowler equation on the hyperbolic space, Calc. Var. Partial Differential Equations 46 (2013), 375-401. https://doi.org/10.1007/s00526-011-0486-8
  3. H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math. 36 (1983), no. 4, 437-477. https://doi.org/10.1002/cpa.3160360405
  4. P. Carriãro, R. Lehrer, O. Miyagaki, A. Vicente, A Brezis-Nirenberg problem on hyperbolic spaces, Electron. J. Differential Equations 2019 (2019), no. 67, 1-15
  5. P. Choquard, J. Stubbe, M. Vuffray, Stationary solutions of the Schrödinger-Newton model - an ODE approach, Differential Integral Equations 21 (2008), 665-679.
  6. F.S. Gao, M.B. Yang, The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Sci. China Math. 61 (2018), 1219-1242. https://doi.org/10.1007/s11425-016-9067-5
  7. E. Lieb, Existence and uniqueness of the minimizing solution of Choquard nonlinear equation, Studies in Appl. Math. 57 (1976/77), 93-105. https://doi.org/10.1002/sapm197757293
  8. P.L. Lions, The Choquard equation and related questions, Nonlinear Anal. 4 (1980), 1063-1072. https://doi.org/10.1016/0362-546X(80)90016-4
  9. G.Z. Lu, Q.H. Yang, Paneitz operators on hyperbolic spaces and high order Hardy-Sobolev Maz'ya inequalities on half spaces, American Journal of Mathematics 141 (2019), 1777-1816. https://doi.org/10.1353/ajm.2019.0047
  10. G. Mancini, K. Sandeep, On a semilinear elliptic equaition in \(\mathbb{H}^N\), Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7 (2008), 635-671.
  11. L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal. 195 (2010), 455-467. https://doi.org/10.1007/s00205-008-0208-3
  12. G.P. Menzala, On regular solutions of a nonlinear equation of Choquard type, Proc. Roy. Soc. Edinburgh Sect. A 86 (1980), 291-301. https://doi.org/10.1017/S0308210500012191
  13. I.M. Moroz, R. Penrose, P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity 15 (1998), no. 9, 2733-2742.
  14. V. Moroz, J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265 (2013), 153-184.
  15. V. Moroz, J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), 6557-6579.
  16. V. Moroz, J. Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations 52 (2015), 199-235. https://doi.org/10.1007/s00526-014-0709-x
  17. V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math. 17 (2015), no. 05, 1550005 https://doi.org/10.1142/S0219199715500054
  18. S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.
  19. R. Penrose, On gravity role in quantum state reduction, Gen. Relativ. Gravitat. 28 (1996), 581-600.
  20. D. Qin, V.D. Rädulescu, X. Tang, Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations, J. Differential Equations 275 (2021), 652-683. https://doi.org/10.1016/j.jde.2020.11.021
  21. P. Tod, I.M. Moroz, An analytical approach to the Schrödinger-Newton equations, Nonlinearity 12 (1999), no. 2, 201-216.
  22. S. Stapelkamp, The Brezis-Nirenberg problem on \(\mathbb{H}^N\). Existence and uniqueness of solutions, [in:] Elliptic and Parabolic Problems, World Scientific, River Edge, 2002, pp. 283-290.
  23. Z. Yang, F. Zhao, Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth, Adv. Nonlinear Anal. 10 (2021), no. 1, 732-774. https://doi.org/10.1515/anona-2020-0151
  24. W. Zhang, J. Zhang, Multiplicity and concentration of positive solutions for fractional unbalanced double phase problems, J. Geom. Anal. 32 (2022), Article no. 235. https://doi.org/10.1007/s12220-022-00983-3
  25. W. Zhang, S. Yuan, L. Wen, Existence and concentration of ground-states for fractional Choquard equation with indefinite potential, Adv. Nonlinear Anal. 11 (2022), 1552-1578. https://doi.org/10.1515/anona-2022-0255
  26. G. Zhu, C. Duan, J. Zhang, H. Zhang, Ground states of coupled critical Choquard equations with weighted potentials, Opuscula Math. 42 (2022), no. 2, 337-354. https://doi.org/10.7494/OpMath.2022.42.2.337
  • Haiyang He
  • Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), College of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, P.R. China
  • Communicated by Vicentiu D. Rădulescu.
  • Received: 2022-06-24.
  • Revised: 2022-08-20.
  • Accepted: 2022-08-20.
  • Published online: 2022-09-08.
Opuscula Mathematica - cover

Cite this article as:
Haiyang He, Nonlinear Choquard equations on hyperbolic space, Opuscula Math. 42, no. 5 (2022), 691-708, https://doi.org/10.7494/OpMath.2022.42.5.691

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.