Opuscula Math. 42, no. 5 (2022), 691-708
https://doi.org/10.7494/OpMath.2022.42.5.691
Opuscula Mathematica
Nonlinear Choquard equations on hyperbolic space
Abstract. In this paper, our purpose is to prove the existence results for the following nonlinear Choquard equation \[-\Delta_{\mathbb{B}^{N}}u=\int_{\mathbb{B}^N}\dfrac{|u(y)|^{p}}{|2\sinh\frac{\rho(T_y(x))}{2}|^\mu} dV_y \cdot |u|^{p-2}u +\lambda u\] on the hyperbolic space \(\mathbb{B}^N\), where \(\Delta_{\mathbb{B}^{N}}\) denotes the Laplace-Beltrami operator on \(\mathbb{B}^N\), \[\sinh\frac{\rho(T_y(x))}{2}=\dfrac{|T_y(x)|}{\sqrt{1-|T_y(x)|^2}}=\dfrac{|x-y|}{\sqrt{(1-|x|^2)(1-|y|^2)}},\] \(\lambda\) is a real parameter, \(0\lt \mu\lt N\), \(1\lt p\leq 2_\mu^*\), \(N\geq 3\) and \(2_\mu^*:=\frac{2N-\mu}{N-2}\) is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.
Keywords: nonlinear Choquard equation, hyperbolic space, existence solutions, Hardy-Littlewood-Sobolev inequality.
Mathematics Subject Classification: 35A01, 35J60.
- M. Bhakta, K. Sandeep, Poincaré-Sobolev equations in the hyperbolic space, Calc. Var. Partial Differential Equations 44 (2012), 247-269. https://doi.org/10.1007/s00526-011-0433-8
- M. Bonforte, F. Gazzola, G. Grillo, J.L. Vázquez, Classification of radial solutions to the Emden-Fowler equation on the hyperbolic space, Calc. Var. Partial Differential Equations 46 (2013), 375-401. https://doi.org/10.1007/s00526-011-0486-8
- H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math. 36 (1983), no. 4, 437-477. https://doi.org/10.1002/cpa.3160360405
- P. Carriãro, R. Lehrer, O. Miyagaki, A. Vicente, A Brezis-Nirenberg problem on hyperbolic spaces, Electron. J. Differential Equations 2019 (2019), no. 67, 1-15
- P. Choquard, J. Stubbe, M. Vuffray, Stationary solutions of the Schrödinger-Newton model - an ODE approach, Differential Integral Equations 21 (2008), 665-679.
- F.S. Gao, M.B. Yang, The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Sci. China Math. 61 (2018), 1219-1242. https://doi.org/10.1007/s11425-016-9067-5
- E. Lieb, Existence and uniqueness of the minimizing solution of Choquard nonlinear equation, Studies in Appl. Math. 57 (1976/77), 93-105. https://doi.org/10.1002/sapm197757293
- P.L. Lions, The Choquard equation and related questions, Nonlinear Anal. 4 (1980), 1063-1072. https://doi.org/10.1016/0362-546X(80)90016-4
- G.Z. Lu, Q.H. Yang, Paneitz operators on hyperbolic spaces and high order Hardy-Sobolev Maz'ya inequalities on half spaces, American Journal of Mathematics 141 (2019), 1777-1816. https://doi.org/10.1353/ajm.2019.0047
- G. Mancini, K. Sandeep, On a semilinear elliptic equaition in \(\mathbb{H}^N\), Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7 (2008), 635-671.
- L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal. 195 (2010), 455-467. https://doi.org/10.1007/s00205-008-0208-3
- G.P. Menzala, On regular solutions of a nonlinear equation of Choquard type, Proc. Roy. Soc. Edinburgh Sect. A 86 (1980), 291-301. https://doi.org/10.1017/S0308210500012191
- I.M. Moroz, R. Penrose, P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity 15 (1998), no. 9, 2733-2742.
- V. Moroz, J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265 (2013), 153-184.
- V. Moroz, J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), 6557-6579.
- V. Moroz, J. Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations 52 (2015), 199-235. https://doi.org/10.1007/s00526-014-0709-x
- V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math. 17 (2015), no. 05, 1550005 https://doi.org/10.1142/S0219199715500054
- S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.
- R. Penrose, On gravity role in quantum state reduction, Gen. Relativ. Gravitat. 28 (1996), 581-600.
- D. Qin, V.D. Rädulescu, X. Tang, Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations, J. Differential Equations 275 (2021), 652-683. https://doi.org/10.1016/j.jde.2020.11.021
- P. Tod, I.M. Moroz, An analytical approach to the Schrödinger-Newton equations, Nonlinearity 12 (1999), no. 2, 201-216.
- S. Stapelkamp, The Brezis-Nirenberg problem on \(\mathbb{H}^N\). Existence and uniqueness of solutions, [in:] Elliptic and Parabolic Problems, World Scientific, River Edge, 2002, pp. 283-290.
- Z. Yang, F. Zhao, Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth, Adv. Nonlinear Anal. 10 (2021), no. 1, 732-774. https://doi.org/10.1515/anona-2020-0151
- W. Zhang, J. Zhang, Multiplicity and concentration of positive solutions for fractional unbalanced double phase problems, J. Geom. Anal. 32 (2022), Article no. 235. https://doi.org/10.1007/s12220-022-00983-3
- W. Zhang, S. Yuan, L. Wen, Existence and concentration of ground-states for fractional Choquard equation with indefinite potential, Adv. Nonlinear Anal. 11 (2022), 1552-1578. https://doi.org/10.1515/anona-2022-0255
- G. Zhu, C. Duan, J. Zhang, H. Zhang, Ground states of coupled critical Choquard equations with weighted potentials, Opuscula Math. 42 (2022), no. 2, 337-354. https://doi.org/10.7494/OpMath.2022.42.2.337
- Haiyang He
- Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), College of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, P.R. China
- Communicated by Vicentiu D. Rădulescu.
- Received: 2022-06-24.
- Revised: 2022-08-20.
- Accepted: 2022-08-20.
- Published online: 2022-09-08.