Opuscula Math. 42, no. 4 (2022), 561-571
https://doi.org/10.7494/OpMath.2022.42.4.561

 
Opuscula Mathematica

Upper bounds on distance vertex irregularity strength of some families of graphs

Sylwia Cichacz
Agnieszka Görlich
Andrea Semaničová-Feňovčíková

Abstract. For a graph \(G\) its distance vertex irregularity strength is the smallest integer \(k\) for which one can find a labeling \(f: V(G)\to \{1, 2, \dots, k\}\) such that \[ \sum_{x\in N(v)}f(x)\neq \sum_{x\in N(u)}f(x)\] for all vertices \(u,v\) of \(G\), where \(N(v)\) is the open neighborhood of \(v\). In this paper we present some upper bounds on distance vertex irregularity strength of general graphs. Moreover, we give upper bounds on distance vertex irregularity strength of hypercubes and trees.

Keywords: distance vertex irregularity strength of a graph, hypercube, tree.

Mathematics Subject Classification: 05C65, 05C78.

Full text (pdf)

  1. M. Anholcer, S. Cichacz, D. Froncek, R. Simanjuntak, J. Qiu, Group distance magic and antimagic hypercubes, Discrete Math. 344 (2021), 112625. https://doi.org/10.1016/j.disc.2021.112625
  2. M. Bača, A. Semaničová-Feňovčíková, Slamin, K.A. Sugeng, On inclusive distance vertex irregular labelings, Electron. J. Graph Theory Appl. 6 (2018), no. 1, 61-83. http://dx.doi.org/10.5614/ejgta.2018.6.1.5
  3. T. Bartnicki, B. Bosek, S. Czerwiński, J. Grytczuk, G. Matecki, W. Żelazny, Additive coloring of planar graphs, Graphs Combin. 30 (2014), 1087-1098. https://doi.org/10.1007/s00373-013-1331-y
  4. N.H. Bong, Y. Lin, Slamin, On distance irregular labelings of cycles and wheels, Australas. J. Comb. 69 (2017), no. 3, 315-322.
  5. N.H. Bong, Y. Lin, Slamin, On inclusive and non-inclusive vertex irregular \(d\)-distance vertex labelings, J. Combin. Math. Combin. Comput. 113 (2020), 233-247.
  6. G. Chartrand, M.S. Jacobson, J. Lehel, O. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congr. Numer. 64 (1988), 187-192.
  7. S. Cichacz, D. Froncek, K. Sugeng, S. Zhou, Group distance magic and antimagic graphs, Acta Math. Sin. (Engl. Ser.) 32 (2016), 1159-1176. https://doi.org/10.1007/s10114-016-4646-9
  8. S. Cichacz, A. Görlich, A. Semaničová-Feňovčíková, Upper bounds on inclusive distance vertex irregularity strength, Graphs Combin. 37 (2021), 2713-2721. https://doi.org/10.1007/s00373-021-02385-8
  9. S. Czerwiński, J. Grytczuk, W. Żelazny, Lucky labelings of graphs, Inform. Process. Lett. 109 (2009), 1078-1081. https://doi.org/10.1016/j.ipl.2009.05.011
  10. P. Gregor, P. Kovář, Distance magic labelings of hypercubes, Electronic Notes in Discrete Math. 40 (2013), 145-149. https://doi.org/10.1016/j.endm.2013.05.027
  11. R. Hammack, W. Imrich, S. Klavžar, Handbook of product graphs , 2nd ed., Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 2011, with a foreword by Peter Winkler.
  12. M. Karoński, T. Łuczak, A. Thomason, Edge weights and vertex colours, J. Comb. Theory Ser. B 91 (2004), 151-157. https://doi.org/10.1016/j.jctb.2003.12.001
  13. M. Miller, C. Rodger, R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Comb. 28 (2003), 305-315.
  14. Slamin, On distance irregular labelings of graphs, Far East J. Math. Sci. 102 (2017), no. 5, 919-932. http://dx.doi.org/10.17654/MS102050919
  15. F. Susanto, K. Wijaya, Slamin, A. Semaničová-Feňovčíková, Distance irregularity strength of graphs with pendant vertices, Opuscula Math. 42 (2022), no. 3, 439-458. https://doi.org/10.7494/OpMath.2022.42.3.439
  • Agnieszka Görlich (corresponding author)
  • ORCID iD https://orcid.org/0000-0002-7198-0531
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Communicated by Dalibor Fronček.
  • Received: 2021-07-27.
  • Revised: 2022-04-06.
  • Accepted: 2022-04-08.
  • Published online: 2022-06-30.
Opuscula Mathematica - cover

Cite this article as:
Sylwia Cichacz, Agnieszka Görlich, Andrea Semaničová-Feňovčíková, Upper bounds on distance vertex irregularity strength of some families of graphs, Opuscula Math. 42, no. 4 (2022), 561-571, https://doi.org/10.7494/OpMath.2022.42.4.561

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.