Opuscula Math. 42, no. 4 (2022), 561-571
https://doi.org/10.7494/OpMath.2022.42.4.561
Opuscula Mathematica
Upper bounds on distance vertex irregularity strength of some families of graphs
Sylwia Cichacz
Agnieszka Görlich
Andrea Semaničová-Feňovčíková
Abstract. For a graph \(G\) its distance vertex irregularity strength is the smallest integer \(k\) for which one can find a labeling \(f: V(G)\to \{1, 2, \dots, k\}\) such that \[ \sum_{x\in N(v)}f(x)\neq \sum_{x\in N(u)}f(x)\] for all vertices \(u,v\) of \(G\), where \(N(v)\) is the open neighborhood of \(v\). In this paper we present some upper bounds on distance vertex irregularity strength of general graphs. Moreover, we give upper bounds on distance vertex irregularity strength of hypercubes and trees.
Keywords: distance vertex irregularity strength of a graph, hypercube, tree.
Mathematics Subject Classification: 05C65, 05C78.
- M. Anholcer, S. Cichacz, D. Froncek, R. Simanjuntak, J. Qiu, Group distance magic and antimagic hypercubes, Discrete Math. 344 (2021), 112625. https://doi.org/10.1016/j.disc.2021.112625
- M. Bača, A. Semaničová-Feňovčíková, Slamin, K.A. Sugeng, On inclusive distance vertex irregular labelings, Electron. J. Graph Theory Appl. 6 (2018), no. 1, 61-83. http://dx.doi.org/10.5614/ejgta.2018.6.1.5
- T. Bartnicki, B. Bosek, S. Czerwiński, J. Grytczuk, G. Matecki, W. Żelazny, Additive coloring of planar graphs, Graphs Combin. 30 (2014), 1087-1098. https://doi.org/10.1007/s00373-013-1331-y
- N.H. Bong, Y. Lin, Slamin, On distance irregular labelings of cycles and wheels, Australas. J. Comb. 69 (2017), no. 3, 315-322.
- N.H. Bong, Y. Lin, Slamin, On inclusive and non-inclusive vertex irregular \(d\)-distance vertex labelings, J. Combin. Math. Combin. Comput. 113 (2020), 233-247.
- G. Chartrand, M.S. Jacobson, J. Lehel, O. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congr. Numer. 64 (1988), 187-192.
- S. Cichacz, D. Froncek, K. Sugeng, S. Zhou, Group distance magic and antimagic graphs, Acta Math. Sin. (Engl. Ser.) 32 (2016), 1159-1176. https://doi.org/10.1007/s10114-016-4646-9
- S. Cichacz, A. Görlich, A. Semaničová-Feňovčíková, Upper bounds on inclusive distance vertex irregularity strength, Graphs Combin. 37 (2021), 2713-2721. https://doi.org/10.1007/s00373-021-02385-8
- S. Czerwiński, J. Grytczuk, W. Żelazny, Lucky labelings of graphs, Inform. Process. Lett. 109 (2009), 1078-1081. https://doi.org/10.1016/j.ipl.2009.05.011
- P. Gregor, P. Kovář, Distance magic labelings of hypercubes, Electronic Notes in Discrete Math. 40 (2013), 145-149. https://doi.org/10.1016/j.endm.2013.05.027
- R. Hammack, W. Imrich, S. Klavžar, Handbook of product graphs , 2nd ed., Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 2011, with a foreword by Peter Winkler.
- M. Karoński, T. Łuczak, A. Thomason, Edge weights and vertex colours, J. Comb. Theory Ser. B 91 (2004), 151-157. https://doi.org/10.1016/j.jctb.2003.12.001
- M. Miller, C. Rodger, R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Comb. 28 (2003), 305-315.
- Slamin, On distance irregular labelings of graphs, Far East J. Math. Sci. 102 (2017), no. 5, 919-932. http://dx.doi.org/10.17654/MS102050919
- F. Susanto, K. Wijaya, Slamin, A. Semaničová-Feňovčíková, Distance irregularity strength of graphs with pendant vertices, Opuscula Math. 42 (2022), no. 3, 439-458. https://doi.org/10.7494/OpMath.2022.42.3.439
- Sylwia Cichacz
https://orcid.org/0000-0002-7738-0924
- AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
- Agnieszka Görlich (corresponding author)
https://orcid.org/0000-0002-7198-0531
- AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
- Andrea Semaničová-Feňovčíková
https://orcid.org/0000-0002-8432-9836
- Technical University, Department of Applied Mathematics and Informatics, Košice, Slovakia
- Communicated by Dalibor Fronček.
- Received: 2021-07-27.
- Revised: 2022-04-06.
- Accepted: 2022-04-08.
- Published online: 2022-06-30.