Opuscula Math. 42, no. 4 (2022), 549-560
https://doi.org/10.7494/OpMath.2022.42.4.549

 
Opuscula Mathematica

Oscillation of even order linear functional differential equations with mixed deviating arguments

Blanka Baculikova

Abstract. In the paper, we study oscillation and asymptotic properties for even order linear functional differential equations \[y^{(n)}(t)=p(t)y(\tau(t))\] with mixed deviating arguments, i.e. when both delayed and advanced parts of \(\tau(t)\) are significant. The presented results essentially improve existing ones.

Keywords: higher order differential equations, mixed argument, monotonic properties, oscillation.

Mathematics Subject Classification: 34K11, 34C10.

Full text (pdf)

  1. R.P. Agarwal, S.R. Grace, D. O'Regan, Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations, Kluver Academic Publishers, Dotrecht, 2002.
  2. B. Baculikova, Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett. 91 (2019), 68-75. https://doi.org/10.1016/j.aml.2018.11.021
  3. B. Baculikova, Oscillatory behavior of the second order noncanonical differential equation, Electron. J. Qual. Theory Differ. Equ. 2019, no. 89, 1-11. https://doi.org/10.14232/ejqtde.2019.1.89
  4. B. Baculikova, Oscillation and asymptotic properties of second order half-linear differential equations with mixed deviating arguments, Mathematics 2021, 9(20), 2552. https://doi.org/10.3390/math9202552
  5. G.E. Chatzarakis, B. Dorociakova, R. Olah, An oscillation criterion of linear delay differential equations, Adv. Difference Equ. (2021), Article no. 85. https://doi.org/10.1186/s13662-021-03246-7
  6. O. Došly, P. Řehák, Half-linear Differential Equations, vol. 202, North-Holland Mathematics Studies, 2005.
  7. J. Dzurina, I. Jadlovska, Oscillation of \(n\)-th order strongly noncanonical delay differential equations, Appl. Math. Lett. 115 (2021), Article no. 106940. https://doi.org/10.1016/j.aml.2020.106940
  8. S.R. Grace, I. Jadlovska, A. Zafer, Oscillatory behavior of \(n\)-th order nonlinear delay differential equations with a nonpositive neutral term, Hacet. J. Math. Stat. 49 (2021), no. 2, 766-776. https://doi.org/10.15672/hujms.471023
  9. I.T. Kiguradze, T.A. Chaturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht, 1993.
  10. R. Koplatadze, On differential equations with a delayed argument having properties A and B, Differ. Uravn. (Minsk) 25 (1989), 1897-1909.
  11. R. Koplatadze, T.A. Chanturia, On oscillatory properties of differential equations with deviating arguments, Tbilisi Univ. Press, Tbilisi, 1977.
  12. R. Koplatadze, G. Kvinkadze, I.P. Stavroulakis, Properties A and B of \(n\)-th order linear differential equations with deviating argument, Georgian Math. J. 6 (1999), no. 6, 553-566.
  13. T. Kusano, On even order functional differential equations with advanced and retarded arguments, J. Differential Equations 45 (1982), no. 1, 75-84. https://doi.org/10.1016/0022-0396(82)90055-9
  14. T. Kusano, Oscillation of even order linear functional differential equations with deviating arguments of mixed type, J. Math. Anal. Appl. 98 (1984), no. 2, 341-347. https://doi.org/10.1016/0022-247X(84)90253-1
  15. G. Ladas, V. Lakshmikantham, J.S. Papadakis, B.G. Zhang, Oscillation of higher-order retarded differential equations generated by retarded argument, Delay and Functional Differential Equations and Their Applications, pp. 219--231, Academic Press, New York, 1972.
  • Blanka Baculikova
  • Technical University of Košice, Faculty of Electrical Engineering and Informatics, Department of Mathematics, Letná 9, 042 00 Košice, Slovakia
  • Communicated by Josef Diblík.
  • Received: 2022-03-11.
  • Revised: 2022-04-27.
  • Accepted: 2022-05-12.
  • Published online: 2022-06-30.
Opuscula Mathematica - cover

Cite this article as:
Blanka Baculikova, Oscillation of even order linear functional differential equations with mixed deviating arguments, Opuscula Math. 42, no. 4 (2022), 549-560, https://doi.org/10.7494/OpMath.2022.42.4.549

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.