Opuscula Math. 42, no. 3 (2022), 459-487
https://doi.org/10.7494/OpMath.2022.42.3.459

 
Opuscula Mathematica

Spectral resolutions for non-self-adjoint block convolution operators

Ewelina Zalot

Abstract. The paper concerns the spectral theory for a class of non-self-adjoint block convolution operators. We mainly discuss the spectral representations of such operators. It is considered the general case of operators defined on Banach spaces. The main results are applied to periodic Jacobi matrices.

Keywords: spectral operators, chains, triangular decomposition, Laurent operators, Jacobi matrices.

Mathematics Subject Classification: 47B40, 47B28, 47B36, 47B35, 47B39.

Full text (pdf)

  1. N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Dover Publ. Inc., New York, 2020.
  2. M.S. Brodskii, Triangular and Jordan Representations of Linear Operators, Transl. Math., Monographs, vol. 32, Amer. Math. Soc., Providence, R.I., 1971.
  3. M.S. Brodskii, I.Ts. Gokhberg, M.G. Krein, General theorems on triangular representations of linear operators and multiplications of their characteristic functions, Funktsional. Anal. i Prilozhen. 3:4 (1969), 1-27, Transl. in: Funct. Anal. Appl. 3:4 (1969), 255-276.
  4. P.A. Cojuhari, On the spectrum of a class of block Jacobi matrices, operator theory, structured matrices, and dilations, Theta Ser. Adv. Math., Bucharest (2007), 137-152.
  5. P.A. Cojuhari, Discrete spectrum in the gaps for perturbations of periodic Jacobi matrices, J. Comput. Appl. Math. 225 (2009), no. 2, 374-386.
  6. N. Dunford, Spectral theory, II. Resolutions of the identity, Pacific J. Math. 2 (1952), 559-614.
  7. N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354.
  8. N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc 64 (1958), 217-274.
  9. U. Fixman, Problems in spectral operators, Pacific J. Math. 9 (1959), 1029-1051.
  10. Ya.L. Geronimus, Orthogonal Polynomials, Amer. Math. Soc. Transl., Ser. 2, vol. 108, (1977).
  11. I.M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Fiz.-Mat. (1963) [in Russian], English by Israel Program for Scientific Translation, 1965.
  12. I. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of Linear Operators, vol. II, Birkhäuser, Basel, 1993.
  13. I. Gohberg, M. Krein, Theory of Vollterra Operators in Hilbert Space and its Applications, "Nauka", Moscow, 1967, English transl., Transl. Math., Monographs, vol. 24, Amer. Math. Soc., Providence, R.I., 1970.
  14. R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
  15. M.S. Livshits, On the spectral decomposition of linear non-selfadjoint operators, Mat. Sb. 34 (1954), 145-199 [in Russian], English transl. in: Amer. Math. Soc. Transl. (2) 5 (1957), 67-114.
  16. W. Magnus, S. Winkler, Hill's Equation, Interscience Publ., New York, London, Sydney, 1966.
  17. P.B. Naïman, On the theory of periodic and limit-periodic Jacobi matrices, Dokl. Akad. Nauk 143 (1962), no. 2, 277-279 [in Russian].
  18. P.B. Naïman, On the spectral theory of non-hermitian periodic Jacobi matrices, Dopov. Akad. Nauk Ukr. RSR 10 (1963), 1307-1311 [in Ukrainian].
  19. P.B. Naïman, On the spectral theory of the non-symetric periodic Jacobi matrices, Notes of the Faculty of Math. and Mech. of Kharkov's State University and of Kharkov's Math. Society 30 (1964), 138-151 [in Russian].
  20. A.M. Ostrowski, Solution of Equations and Systems of Equations, vol. 9 of Pure and Applied Mathematics, Academic Press, New York, London 1960.
  21. F. Rellich, Perturbation Theory of Eigenvalue Problems, CRC Press, New York, London, Paris, 1969.
  • Communicated by Alexander Gomilko.
  • Received: 2021-12-01.
  • Revised: 2022-01-24.
  • Accepted: 2022-02-13.
  • Published online: 2022-04-29.
Opuscula Mathematica - cover

Cite this article as:
Ewelina Zalot, Spectral resolutions for non-self-adjoint block convolution operators, Opuscula Math. 42, no. 3 (2022), 459-487, https://doi.org/10.7494/OpMath.2022.42.3.459

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.