Opuscula Math. 42, no. 3 (2022), 415-426
https://doi.org/10.7494/OpMath.2022.42.3.415

 
Opuscula Mathematica

Growth of solutions of a class of linear fractional differential equations with polynomial coefficients

Saada Hamouda
Sofiane Mahmoudi

Abstract. This paper is devoted to the study of the growth of solutions of certain class of linear fractional differential equations with polynomial coefficients involving the Caputo fractional derivatives by using the generalized Wiman-Valiron theorem in the fractional calculus.

Keywords: linear fractional differential equations, growth of solutions, Caputo fractional derivative operator.

Mathematics Subject Classification: 34M10, 26A33.

Full text (pdf)

  1. B. Belaidi, K. Hamani, Some results on the complex oscillation theory of differential equations with polynomial coefficients, J. Inequal. Pure Applied Analysis 5 (2004), no. 4, Article 87.
  2. R.P. Boas, Entire Functions, Academic Press Inc., New York, 1954.
  3. I. Chyzhykov, N. Semochko, Generalization of the Wiman-Valiron method for fractional dérivatives, Int. J. Appl. Math. 29 (2016), no. 1, 19-30.
  4. G.G. Gundersen, M. Steinbart, S. Wang, The possible orders of solutions of linear differential equations with polynomial coefficients, Trans. Amer. Math. Soc. 350 (1998), 1225-1247.
  5. W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
  6. G. Jank, L. Volkmann, Einfuhrung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser, Basel-Boston-Stuttgart, 1985.
  7. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  8. I. Laine, Nevanlinna Theory and Complex Differential Equations, W. de Gruyter, Berlin, 1993.
  9. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
  10. I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  11. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993.
  12. G. Valiron, Lectures on the General Theory of Integral Functions, translated by E.F. Collingwood, Chelsea, New York, 1949.
  13. H. Wittich, Neuere Untersuchungen uber eindeutige analytische Funktionen, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1968.
  14. L. Yang, Value Distribution Theory, Springer-Verlag Science Press, Berlin-Beijing, 1993.
  • Saada Hamouda (corresponding author)
  • ORCID iD https://orcid.org/0000-0002-2750-559X
  • University Abdelhamid Ibn Badis, Laboratory of Pure and Applied Mathematics, Department of Mathematics and Computer Science, Mostaganem, Algeria
  • Sofiane Mahmoudi
  • University Abdelhamid Ibn Badis, Laboratory of Pure and Applied Mathematics, Department of Mathematics and Computer Science, Mostaganem, Algeria
  • Communicated by P.A. Cojuhari.
  • Received: 2022-01-31.
  • Accepted: 2022-02-18.
  • Published online: 2022-04-29.
Opuscula Mathematica - cover

Cite this article as:
Saada Hamouda, Sofiane Mahmoudi, Growth of solutions of a class of linear fractional differential equations with polynomial coefficients, Opuscula Math. 42, no. 3 (2022), 415-426, https://doi.org/10.7494/OpMath.2022.42.3.415

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.