Opuscula Math. 42, no. 3 (2022), 393-413
https://doi.org/10.7494/OpMath.2022.42.3.393

 
Opuscula Mathematica

New aspects for the oscillation of first-order difference equations with deviating arguments

Emad R. Attia
Bassant M. El-Matary

Abstract. We study the oscillation of first-order linear difference equations with non-monotone deviating arguments. Iterative oscillation criteria are obtained which essentially improve, extend, and simplify some known conditions. These results will be applied to some numerical examples.

Keywords: difference equations, oscillation, non-monotone advanced arguments.

Mathematics Subject Classification: 39A10, 39A21.

Full text (pdf)

  1. P.G. Asteris, G.E. Chatzarakis, Oscillation tests for difference equations with non-monotone arguments, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 24 (2017), no. 4, 287-302.
  2. E.R. Attia, Oscillation tests for first-order linear differential equations with non-monotone delays, Adv. Differ. Equ. 2021 (2021), Article no. 41.
  3. E.R. Attia, G.E. Chatzarakis, Oscillation tests for difference equations with non-monotone retarded arguments, Appl. Math. Lett. 123 (2022), 107551.
  4. E.R. Attia, G.E. Chatzarakis, Iterative oscillation criteria for first-order difference equations with non-monotone advanced arguments, J. Appl. Math. Comput. (2021), 1-17.
  5. E. Braverman, G.E. Chatzarakis, I.P. Stavroulakis, Iterative oscillation tests for difference equations with several non-monotone arguments, J. Difference Equ. Appl. 21 (2015), 854-874.
  6. E. Braverman, B. Karpuz, On oscillation of differential and difference equations with non-monotone delays, Appl. Math. Comput. 218 (2011), 3880-3887.
  7. G.E. Chatzarakis, Sufficient oscillation conditions for deviating difference equations, Filomat 33 (2019), 3291-3305.
  8. G.E. Chatzarakis, I. Jadlovská, Oscillations in deviating difference equations using an iterative technique, J. Inequal. Appl. 173 (2017), 1-24.
  9. G.E. Chatzarakis, I. Jadlovská, Improved iterative oscillation tests for first-order deviating difference equations, Int. J. Difference Equ. 12 (2017), 185-210.
  10. G.E. Chatzarakis, I. Jadlovská, Oscillations of deviating difference equations using an iterative method, Mediterr. J. Math. 16 (2019), 1-20.
  11. G.E. Chatzarakis, L. Shaikhet, Oscillation criteria for difference equations with non-monotone arguments, Adv. Differ. Equ. 62 (2017), 1-16.
  12. G.E. Chatzarakis, I.P. Stavroulakis, Oscillation of difference equations with general advanced argument, Cent. Eur. J. Math. 10 (2012), 807-823.
  13. G.E. Chatzarakis, S.R. Grace, I. Jadlovská, Oscillation tests for linear difference equations with non-monotone arguments, Tatra Mt. Math. Publ. 79 (2021), 81-100.
  14. G.E. Chatzarakis, R. Koplatadze, I.P. Stavroulakis, Oscillation criteria of first order linear difference equations with delay argument, Nonlinear Anal. 68 (2008), 994-1005.
  15. G.E. Chatzarakis, R. Koplatadze, I.P. Stavroulakis, Optimal oscillation criteria of first order linear difference equations with delay argument, Pacific J. Math. 235 (2008), 15-33.
  16. G.E. Chatzarakis, Ch.G. Philos, I.P. Stavroulakis, An oscillation criterion for linear difference equations with general delay argument, Port. Math. 66 (2009), 513-533.
  17. G.E. Chatzarakis, I.K. Purnaras, I.P. Stavroulakis, Oscillation of retarded difference equations with a non-monotone argument, J. Difference Equ. Appl. 23 (2017), 1354-1377.
  18. L.H. Erbe, Q.K. Kong, B.G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
  19. I. Györi, G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
  20. B. Karpuz, Sharp oscillation and nonoscillation tests for linear difference equations, J. Difference Equ. Appl. 23 (2017), 1929-1942.
  21. J. Shen, I.P. Stavroulakis, Oscillation criteria for delay difference equations, Electron. J. Differential Equations 2001 (2001), 1-15.
  22. I.P. Stavroulakis, Oscillations of delay difference equations, Comput. Math. Appl. 29 (1995), 83-88.
  23. I.P. Stavroulakis, Oscillation criteria for first order delay difference equations, Mediterr. J. Math. 1 (2004), 231-240.
  24. I.P. Stavroulakis, Oscillation criteria for delay and difference equations with non-monotone arguments, Appl. Math. Comput. 226 (2014), 661-672.
  25. B.G. Zhang, C.J. Tian, Nonexistence and existence of positive solutions for difference equations with unbounded delay, Comput. Math. Appl. 36 (1998), 1-8.
  • Emad R. Attia (corresponding author)
  • ORCID iD https://orcid.org/0000-0002-7978-5386
  • Prince Sattam Bin Abdulaziz University, College of Sciences and Humanities in Alkharj, Department of Mathematics, Alkharj 11942, Saudi Arabia
  • Damietta University, Faculty of Science, Department of Mathematics, New Damietta 34517, Egypt
  • Bassant M. El-Matary
  • ORCID iD https://orcid.org/0000-0003-4525-156X
  • Qassim University, College of Science and Arts, Department of Mathematics, Al-Badaya, Buraidah, Saudi Arabia
  • Damietta University, Faculty of Science, Department of Mathematics, New Damietta 34517, Egypt
  • Communicated by Josef Diblík.
  • Received: 2021-11-25.
  • Revised: 2022-03-28.
  • Accepted: 2022-03-31.
  • Published online: 2022-04-29.
Opuscula Mathematica - cover

Cite this article as:
Emad R. Attia, Bassant M. El-Matary, New aspects for the oscillation of first-order difference equations with deviating arguments, Opuscula Math. 42, no. 3 (2022), 393-413, https://doi.org/10.7494/OpMath.2022.42.3.393

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.