Opuscula Math. 42, no. 3 (2022), 393-413
https://doi.org/10.7494/OpMath.2022.42.3.393
Opuscula Mathematica
New aspects for the oscillation of first-order difference equations with deviating arguments
Emad R. Attia
Bassant M. El-Matary
Abstract. We study the oscillation of first-order linear difference equations with non-monotone deviating arguments. Iterative oscillation criteria are obtained which essentially improve, extend, and simplify some known conditions. These results will be applied to some numerical examples.
Keywords: difference equations, oscillation, non-monotone advanced arguments.
Mathematics Subject Classification: 39A10, 39A21.
- P.G. Asteris, G.E. Chatzarakis, Oscillation tests for difference equations with non-monotone arguments, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 24 (2017), no. 4, 287-302.
- E.R. Attia, Oscillation tests for first-order linear differential equations with non-monotone delays, Adv. Differ. Equ. 2021 (2021), Article no. 41.
- E.R. Attia, G.E. Chatzarakis, Oscillation tests for difference equations with non-monotone retarded arguments, Appl. Math. Lett. 123 (2022), 107551.
- E.R. Attia, G.E. Chatzarakis, Iterative oscillation criteria for first-order difference equations with non-monotone advanced arguments, J. Appl. Math. Comput. (2021), 1-17.
- E. Braverman, G.E. Chatzarakis, I.P. Stavroulakis, Iterative oscillation tests for difference equations with several non-monotone arguments, J. Difference Equ. Appl. 21 (2015), 854-874.
- E. Braverman, B. Karpuz, On oscillation of differential and difference equations with non-monotone delays, Appl. Math. Comput. 218 (2011), 3880-3887.
- G.E. Chatzarakis, Sufficient oscillation conditions for deviating difference equations, Filomat 33 (2019), 3291-3305.
- G.E. Chatzarakis, I. Jadlovská, Oscillations in deviating difference equations using an iterative technique, J. Inequal. Appl. 173 (2017), 1-24.
- G.E. Chatzarakis, I. Jadlovská, Improved iterative oscillation tests for first-order deviating difference equations, Int. J. Difference Equ. 12 (2017), 185-210.
- G.E. Chatzarakis, I. Jadlovská, Oscillations of deviating difference equations using an iterative method, Mediterr. J. Math. 16 (2019), 1-20.
- G.E. Chatzarakis, L. Shaikhet, Oscillation criteria for difference equations with non-monotone arguments, Adv. Differ. Equ. 62 (2017), 1-16.
- G.E. Chatzarakis, I.P. Stavroulakis, Oscillation of difference equations with general advanced argument, Cent. Eur. J. Math. 10 (2012), 807-823.
- G.E. Chatzarakis, S.R. Grace, I. Jadlovská, Oscillation tests for linear difference equations with non-monotone arguments, Tatra Mt. Math. Publ. 79 (2021), 81-100.
- G.E. Chatzarakis, R. Koplatadze, I.P. Stavroulakis, Oscillation criteria of first order linear difference equations with delay argument, Nonlinear Anal. 68 (2008), 994-1005.
- G.E. Chatzarakis, R. Koplatadze, I.P. Stavroulakis, Optimal oscillation criteria of first order linear difference equations with delay argument, Pacific J. Math. 235 (2008), 15-33.
- G.E. Chatzarakis, Ch.G. Philos, I.P. Stavroulakis, An oscillation criterion for linear difference equations with general delay argument, Port. Math. 66 (2009), 513-533.
- G.E. Chatzarakis, I.K. Purnaras, I.P. Stavroulakis, Oscillation of retarded difference equations with a non-monotone argument, J. Difference Equ. Appl. 23 (2017), 1354-1377.
- L.H. Erbe, Q.K. Kong, B.G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
- I. Györi, G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
- B. Karpuz, Sharp oscillation and nonoscillation tests for linear difference equations, J. Difference Equ. Appl. 23 (2017), 1929-1942.
- J. Shen, I.P. Stavroulakis, Oscillation criteria for delay difference equations, Electron. J. Differential Equations 2001 (2001), 1-15.
- I.P. Stavroulakis, Oscillations of delay difference equations, Comput. Math. Appl. 29 (1995), 83-88.
- I.P. Stavroulakis, Oscillation criteria for first order delay difference equations, Mediterr. J. Math. 1 (2004), 231-240.
- I.P. Stavroulakis, Oscillation criteria for delay and difference equations with non-monotone arguments, Appl. Math. Comput. 226 (2014), 661-672.
- B.G. Zhang, C.J. Tian, Nonexistence and existence of positive solutions for difference equations with unbounded delay, Comput. Math. Appl. 36 (1998), 1-8.
- Emad R. Attia (corresponding author)
https://orcid.org/0000-0002-7978-5386
- Prince Sattam Bin Abdulaziz University, College of Sciences and Humanities in Alkharj, Department of Mathematics, Alkharj 11942, Saudi Arabia
- Damietta University, Faculty of Science, Department of Mathematics, New Damietta 34517, Egypt
- Bassant M. El-Matary
https://orcid.org/0000-0003-4525-156X
- Qassim University, College of Science and Arts, Department of Mathematics, Al-Badaya, Buraidah, Saudi Arabia
- Damietta University, Faculty of Science, Department of Mathematics, New Damietta 34517, Egypt
- Communicated by Josef Diblík.
- Received: 2021-11-25.
- Revised: 2022-03-28.
- Accepted: 2022-03-31.
- Published online: 2022-04-29.